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Abstract

The category-theoretical notion of a comonad is used
by Freeman [2016b] to develop a pure functional model
that summarizes and abstracts many different user inter-
face paradigms (or architectures) and their behaviour in
applications, whereby each different user interface (UI)
paradigm corresponds to a different choice of comonad.

This work presents a real-world application developed
using an extended model based on the original by Free-
man. These extensions to the original model should ad-
dress some of its shortcomings, namely the support for
asynchronous effects in response to user actions and the
composition of user interfaces with communication, both
indispensable assets in the development of real-world ap-
plications.

Keywords Haskell, PureScript, functional program-
ming, user interfaces, comonads

1 Introduction

User interfaces (UIs) are not only difficult to design, but
also to implement. They are important parts of real-world
applications, which, traditionally, have been developed in
a heavily imperative and informal style. Recently, how-
ever, many techniques for the declarative specification of
user interfaces have come into play. They aim to describe
a user interface in terms of its internal state, instead of
giving instructions on how to build it from transitions.
These techniques, however define several different archi-
tectural styles or paradigms for implementing and orga-
nizing UIs in applications and, mostly, lack constructs for
combination, composition and communication between
interface components.

In spite of this multiplicity of techniques for the speci-
fication of user interfaces, Freeman [2016b] proposed the
use of category-theoretical structures called comonads
and monads in a generalized model that could abstract
these several different UI architectures. It was shown in
the first part of this work that the original model by Free-
man could abstract at least three different known UI
architectures—even when used in the same application—,
and that it could be extended to support synchronous ef-
fects in response to user actions and a limited form of com-
position of UI components with communication [Xavier,
2017a].

For the purposes of this further development, however,
the extensions developed in Xavier [2017a] do not suffice.
In this work, by “real-world application”, we intend to des-
ignate an application that has to deal with the concerns
pointed by Myers [1993], namely: having to react to user
input on real-time in a multiprocessed environment while
having to account for modularity and correctness. This
implies the need for proper handling of asynchronous ef-
fects (e.g. network requests) in response to user input,
and for powerful methods of composition, combination
and communication between user interface components.

1.1 Related work

Freeman [2016b] shows that comonad and monad trans-
formers could be used to hierarchically compose user in-
terface components, and Xavier [2017a] shows that this
form of composition is not very flexible in terms of com-
munication between components when used alone by it-
self.
In the work of Xavier [2017a] a limiting—but concep-

tually more adequate—method for the execution of user
interface components specified as comonads makes it chal-



lenging to use arbitrary comonads as UI components. It
also prevents the interleaving of state changes in these
components with asynchronous effects in response to user
interaction. The replacement of this method by the orig-
inal one proposed by Freeman [2016b] should enable this
possibility through the usage of the techniques described
in Kmett [2011a,b].

Regarding the composition and combination of UI com-
ponents, Freeman [2018] defines conjunctive and disjunc-
tive combinations of comonads—and, consequently, of
user interface components. These structures of combina-
tion are used in this work with a novel, more powerful
model for communication between components, in order
to develop complex applications with multiple, encapsu-
lated but communicating user interface components.

1.2 Outline

This work consists of five main sections. In Section 2,
a concise review of the works of Freeman [2016b]
and Xavier [2017a] is given, highlighting the most impor-
tant points for understanding user interfaces as comon-
ads.
In Section 3, the greatest pain points in the models

described in Section 2 are highlighted. In Section 4,
we explain and justify what are the conditions a good
approach for the development of user interfaces should
satisfy, and what a “real-world” application is, and how
one shall be used in this work in order to validate our
model for the development of UI-based applications in
an industrial or day-to-day setting.
In Section 5 we present the developed application

and the final model that suits the needs highlighted in
Section 4. Finally, in Section 6, we evaluate the results
and the model developed, highlighting its most striking
advantages and disadvantages, comparing it to known
approaches to the development of declarative user inter-
faces, and commenting on the development experience
and challenges faced. Also, many possibilities for future
work and room for improvement or experimentation over
the developed model are described in this last section.

2 User interfaces as comonads

User interfaces are commonly described in terms of two
constructs: an internal state, and a rendering function,
which, given its internal state, returns a declarative rep-
resentation of the visualization of the interface, that is,
what is to be presented to the user.

Thus, this type of user interface components could be
described by a tuple S×(S → A), where S is the type (or
set) of possible internal states for this component, and A

is the type of declarative representations of the interface.
This tuple is represented by the Store data type:

data Store s a = Store (s -> a) s

It so happens that, as shown in Xavier [2017b], the
Store data type is a comonad. Comonads are mathe-
matical structures that are traditionally used in pure
functional programming to model context-dependent no-
tions of computations, or computations within a context
[Kieburtz, 1999; Orchard & Mycroft, 2012; Uustalu &
Vene, 2005, 2008], and are given in Haskell by the type
class:

class Functor w => Comonad w where
extract :: w a -> a
duplicate :: w a -> w (w a)

Interpreting the Comonad type class in terms of user
interfaces, one may think of extract as a function that ren-
ders the UI’s current state, and of duplicate as a function
that captures the possible future interfaces and their re-
spective states. This can be better viewed in the Comonad
instance for the Store data type:

instance Comonad (Store s) where
extract (Store view state) = view state
duplicate (Store view state) =

Store (Store view) state

In the case of the Store data type, the duplicate
function essentially replaces all future outcomes of the
rendering function of type s -> a with a new user in-
terface component of type Store s a with a different,
replaced internal state.

Thus, a comonad can be thought of as a space shaped
by the definition of the comonad (in the case of Store
s it should be a space with coordinates given by the
type s), where every point of the space is associated with
a value of type a, and centered around a distinct base
point [Freeman, 2016b]. In this sense, executing a user
interface consists in exploring this comonadic space, that
is, repeatedly exploding the possible future states and
selecting one of those.
If w is a comonad, the process of executing a user

interface component given by w, consists in repeated ap-
plications of the duplicate and select functions below,
where t w points to a specific future state in w (w a):

duplicate :: w a -> w (w a)
select :: t w -> w (w a) -> w a

The duplicate function allows for peeking into the
possible future values of the comonad w, while select
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allows for selecting a specific future. It remains, however,
undefined how to develop such a select function to rep-
resent the transitions or movements in the comonadic
space.

2.1 Pairings of functors

It was shown in Freeman [2016b] that such a select
function could be constructed by using the concept of
pairings of functors [Kmett, 2008].

class Pairing m w | m -> w, w -> m where
pair :: (a -> b -> c) -> m a -> w b -> c

The intuition behind Pairing is that the structure of
both functors m and w is related in some way, so that
they annihilate each other with the application of the
pair function. In this sense, the type m represents state
transitions for a user interface given by w, that is, a way
of navigating the comonad w. Given the type of the pair
function, it is, then, simple to implement the select func-
tion:

select :: Pairing m w => m b -> w (w a) -> w a
select = pair (\_ wa -> wa)

Some monads and comonads provide interesting exam-
ples of pairings, as shown in Freeman [2016b]. The case
for the pairing functor m being a monad is useful when
thinking of composed state transitions. If the monad m,
when paired with a comonad w, represents transitions or
movements in the comonadic space, then, precisely be-
cause it is a monad, multiple sequential transitions can
be composed by using the monadic bind operation.

As an illustrative example, consider the State type:

data State s a = State (s -> (s, a))

There exists a pairing between State and Store:

instance Pairing (State s) (Store s) where
pair f (State run) (Store get state) =

let (a, next) = run state
in f a (get next)

In the pairing above, the current state encapsulated in
Store is passed to the transition function in State that,
in turn, returns a value of type a and a new state that
can be used to retrieve a value from Store.

Then this pairing is applied to a value of type Store s
(Store s a) by means of the select function, the value
of type State s b is used to navigate in the comonadic
space defined by Store s, and, in terms of user interfaces,
it represents a state transition.

Thus, starting with a value w of type Store Int Int,
and applying a sequence of monadic actions of type
State Int () with the select function, it is possible
to obtain a new, transformed w:

w :: Store Int Int
w = Store id 0

actions :: State Int ()
actions = do

put 5
modify (+5)
s <- get
put (s * 3 + 1)

w’ :: Store Int Int
w’ = select actions (duplicate w)

In this case, extracting the value contained in w’ with
extract w’ should return 31. Given the definition of
both State s and Store s, it is possible to see that,
in the context of user interfaces, it models any of those
which have an internal state of type s that can be read
and modified freely.

This technique is directly related to the interpretation
of programs described in a Free monad by coalgebras of
a Cofree comonad [Kmett, 2008].

3 Addressed issues

Despite its conceptual simplicity, the implementation and
usage of the model described in the previous section
for the development of user interface based applications
poses some difficult problems.
As shown in Xavier [2017b], having to deal with an-

other specific data type—the pairing functor in this case—
drastically hurts the quest for generalization, and also
makes it extremely laborious to experiment with and to
use different comonads to represent different UI architec-
tures. The comonad combinators described in Freeman
[2018], for example, cannot be used in such a setting, as
coming up with a pairing functor for these combinators
is a somewhat arduous task.
Another direct consequence of the use of pairings be-

tween a comonad and a monad describing state transi-
tions is the impossibility of interleaving effectful compu-
tations and state transitions in response to user actions.
As state transitions of a user interface component given
by a comonad w are given by a monad m such that there
exists a pairing between m and w, the only possibility
for interleaving effectful actions and state transitions is
with monad transformers [Xavier, 2017b]. It is the case,
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however, that monad transformers, in this setting, are
used for representing actions in hierarchically composed
components, as monad transformers pair with comonad
transformers.

Another pain point described in Xavier [2017b] is the
lack of powerful methods for abstracting communication
between components in such a way that the encapsulation
property of components is maintained. That is, proper
ways for a component to communicate outputs or receive
inputs from other components even if its comonad does
not allow for these operations.

4 Methodology

In order to validate the assumption of Freeman [2016b]
that “the approach can probably be extended to support
real-world applications”, it is, first, necessary to under-
stand or propose what a “real-world” application could
be.
In the same paragraph, Freeman talks about the pos-

sibility of support for external input or side effects in
response to user actions, an important characteristic of
any application developed and used in an industrial or
day-to-day setting. However, only this trait is not suffi-
cient for defining real-world applications [Myers, 1993]:

• The nature of the side effects that may be executed
in response to user actions is important. Some appli-
cations may produce only synchronous effects (e.g.
writing to a local database), while others might pro-
duce asynchronous effects as well (e.g. performing
a network request) whose response must affect the
state of the UI.

• Some applications contain just one or a few user
interface components, while others contain dozens
of them that must communicate with each other.

• Some applications are composed of a single screen,
while others have multiple, each one presenting the
user unique information and different components.

In this sense, our proposal of a real-world application
to validate the extended model of Freeman [2016b] must
take these matters in account. Because of that, we pro-
pose the development of an RSS feed reader as an appli-
cation capable of validating the use of this model in an
industrial or day-to-day setting.

4.1 An RSS feed reader

Really Simple Syndication (RSS) is a Web content syndi-
cation format based on the XML 1.0 specification [Winer,
2005]. Services may provide content to users in the form
of an RSS feed, a periodically updated document main-
tained by the service that typically contains itemized
information such as announcements on Web sites or up-
dates to weblogs [Liu et al., 2005].

An RSS feed reader is, thus, a client application capa-
ble of accessing and parsing RSS feed documents, viewing
metadata of such documents (such as URL, title and de-
scription), persisting the access to these documents (so
that the user can periodically view updated content), and
displaying the content of these documents to the user.

This type of application satisfies our requirements for
a “real-world application”, as it: performs synchronous
effects when storing a document’s URL for future ac-
cess; performs asynchronous effects when downloading
the contents of a document; and may be composed of
several components; may present the user at least three
different screens, one for adding a new RSS feed, one for
viewing the stored feeds, and one for viewing the content
of each feed.

5 Results and discussion

Our real-world application [Xavier, 2018] was developed
in the PureScript language [PureScript, 2013] and used
the React library [Facebook, 2013] for rendering the user
interfaces, that is, presenting them to the user. It makes
use of an external library for parsing the RSS feed doc-
uments into PureScript data types and is composed of
five user interface components, namely:

1. ViewFeed: a component for viewing a paginated
list of items from an RSS feed;

2. ViewItem: a component for reading a selected item;

3. Router: a router component that combines the two
aforementioned components, that switches between
them as requested, and that displays a “No feed se-
lected” message when the application is initialized;

4. NewFeedModal: a modal window component that
appears on top of the other components when re-
quested and displays a two-step form for adding a
new RSS feed;

5. App: a global container component that contains
and manages the application data and has all the
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previously mentioned components as children, be-
sides displaying a side navigation bar where the
user can view and access the stored feeds, or show
the NewFeedModal component to add a new one.

Figure 1: Initial screen of the application with two RSS
feeds loaded that can be viewed by clicking on the side
navigation menu.

The following subsections discuss the techniques and
extensions to the original model used in the development
of this application and its user interface components.

5.1 Generating pairing monads for
arbitrary comonads

As stated in Section 3, the model used in the first part
of this work (where user interface components are given
by explicit pairs of comonads and monads) drastically
increases the difficulty of using some specific comonads
for representing UI architectures.
One highly recurrent pattern that can be expressed

by a comonad is that of user interfaces with an implicit
state given by a list of other interfaces. This pattern can
be used to model sequential pages, paginated content,
and step-by-step forms (also known as wizards), and is
modelled by the Zipper data type below:

data Zipper a = Zipper [a] a [a]

This type describes a non-empty list with a focused
element. Its comonad instance describes this behaviour:

instance Comonad Zipper where
extract (Zipper _ focus _) = focus
duplicate z =

Zipper (iterate left z) z (iterate right z)

The extract function simply returns the focused el-
ement, while duplicate replaces every element in the

zipper with a new zipper shifted to have this same ele-
ment in focus, where left and right shift a zipper to
the left and to the right, respectively.
However, it is not easy to build a pairing monad for

this important Zipper data type. For this (and other rea-
sons described in Section 3), we decided to make use of
a data type described in Kmett [2008] and used in Free-
man [2016b] that is itself a pairing monad for any given
comonad:

newtype Transition w a = Transition {
runTransition :: forall r. w (a -> r) -> r
}

The Monad instance for the Transition type can be
viewed in Kmett [2011a] (under the name Co).

With this data type, it is possible to write a
pairTransition function that works as the one defined
in the Pairing type class for any given comonad w and
any Transition w:

pairTransition
:: Functor w
=> (a -> b -> c) -> Transition w b -> w a -> c

pairTransition f t w =
runTransition t (map (flip f) w)

Now, in order to use the Zipper comonad as a user in-
terface component, it is only necessary to write monadic
actions of type Transition Zipper that operate on a
zipper. Thus, given a left function that shifts a zipper
to the left, a monadic transition on zippers that, when
paired against a Zipper comonad, shifts it to the left is
given by:

left :: Zipper a -> Zipper a

moveLeft :: Transition Zipper ()
moveLeft = Transition $ \z -> extract (left z) ()

Notice how moveLeft is a value (not a function), and,
as so, does not depend on a Zipper value to operate
on until it is ran. That is the purpose of using monadic
actions to represent state transitions in user interfaces.

As a further example, recall from Section 2 the Store
data type. A pairing monad for this comonad can be con-
structed by using the Transition data type. Also, the
monadic actions of the State monad can be replicated
and represent the possible state transitions for the Store
comonad:

get :: Transition (Store s) s
get = Transition $

\s@(Store _ state) -> extract s state

5



put :: s -> Transition (Store s) ()
put state = Transition $

\(Store view _) -> view state ()

The modify action can be constructed akin to the def-
inition of put or by sequencing the get and put actions.

5.2 Hierarchical composition of
comonads

It is known that monad transformers are a good ap-
proach for extending monads with additional functional-
ity [Liang et al., 1995; Xavier, 2017a]. In the first part
of this work, however, monad transformers have been
used to model hierarchical composition of user interface
components, by expressing the composition of state tran-
sitions in these components (given by monads).

With the introduction of the Transition monad, how-
ever, it is possible to use only comonad transformers
to represent hierarchical composition of UI components,
as proposed by Freeman [2016b].
As detailed in Xavier [2017a], a simple example of

a comonad transformer is the StoreT comonad, the
comonad transformer version of the Store comonad:

data StoreT s w a = StoreT (w (s -> a)) s

instance Comonad w => Comonad (StoreT s w) where
extract (StoreT wf s) = extract wf s
duplicate (StoreT wf s) =

StoreT (extend StoreT wf) s

Its definition can be seen as imbuing the StoreT
comonad with additional behaviour given by the trans-
formed (or child) comonad w, as well as giving the
child comonad access to the context of StoreT. This
comonad transformer, however, poses a problem, as the
Transition monad can only specify transitions for the
base (or parent) comonad (not for the transformed ones).
It is, however, possible to define a function that trans-
forms transitions in a child comonad to transitions in a
parent one, given a way of transforming a parent comonad
into a child one:

hoistTransition
:: (forall x. v x -> w x)
-> Transition v a -> Transition w a

hoistTransition transform (Transition t) =
Transition (t . transform)

This allows, for instance, for a parent user interface
component to perform transitions or execute actions in-
side a child component. This is how the App component
shows the NewFeedModal component when the user clicks
on the “New feed” button in the side navigation menu.

5.3 Combination of comonads

Other forms of composition of user interfaces and comon-
ads involve horizontal combination instead of hierarchical
(vertical) composition. As of Freeman [2018], comonads
(and, so, user interfaces) can be combined in at least two
distinct ways: products and sums.

Products. The product of two user interfaces can be
understood as a simultaneous occurrence of both, that
is, both user interfaces can be displayed and accessed
at the same time, with their individual states evolving
independently.

As shown in Freeman [2018], the Day convolution [Day,
1970] of two functors f and g is itself a comonad whenever
f and g are comonads [Freeman, 2016a]. This concept
can be represented in Haskell by the following existential
data type:

data Day f g a =
forall x y. Day (x -> y -> a) (f x) (g y)

This encoding allows for the encapsulation of the con-
tents of both f and g while maintaining their functo-
rial and comonadic properties. The Day type may be
interpreted as containing both comonads simultaneously
(what allows their states to evolve independently) and a
function that, given the contents of both comonads, is
able to produce the final result. This function can be
viewed as a rendering function for the product, in the
case where f and g represent user interface components.

Thus, by using the Day data type it is possible to com-
bine two independent user interface components into a
single one where both coexist and unfold independently.

Sums. The sum of two user interfaces represents a dis-
joint union, that is, either one or the other interface can
be displayed and accessed at a given time, though their
states evolve independently.

This behaviour can be represented in a data type simi-
lar to Day. However, instead of providing a function that
produces a final value from the value contained in both
comonads, this new data type must only provide a way
of indicating which one of the two comonads is “active”
at a given moment:

data Sum f g a = Sum Bool (f a) (g a)

The Comonad instance for the Sum data type must make
sure to properly change the boolean value when focus-
ing each of the two comonads to properly represent the
disjoint union of user interfaces.
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A user interface component for routing. Multiple
applications of the Day data type may be used to encode
the product of multiple user interface components. This
can be useful to properly combine multiple independent
UI components that may be displayed side-by-side in an
application.
By combining multiple methods for composition and

combination of components, however, some interesting
behaviours may arise. One example is the construction
of the Router component. It is given as the composition
of a StoreT comonad transformer and a Day product of
the ViewFeed and ViewItem components.

This Router component must select between an empty
user interface, the ViewFeed, and ViewItem components
based on whether a feed, an item from a feed, or none has
been selected. Let Feed be the data type that represents
an RSS feed and Item the type that represents an RSS
item. By using the StoreT data type, then, its internal
state can be given by:

data RouterS
= NoSelection
| SelectedFeed Feed
| SelectedItem Feed Item

From the definition of StoreT, it is possible to see
that, if the Day product is the comonad transformed by
StoreT, then, the rendering function provided by Store
will have access to the context of the product, that is, to
both ViewFeed and ViewItem components:

viewFeed :: ViewFeed a
viewItem :: ViewItem a

router
:: StoreT RouterS (Day ViewFeed ViewItem) a

router =
StoreT

(Day render viewFeed viewItem)
NoSelection

where
render :: a -> a -> RouterState -> a
render viewFeed’ viewItem’ state =

case state of
NoSelection -> ...
SelectedFeed feed -> ...
SelectedItem feed item -> ...

This component gives a model for an architecture of
user interface routers. With repeated applications of the
Day product, multiple user interface components can be
combined together and selected through the state value
provided by StoreT.
It is important to notice, however, that other differ-

ent UI architectures may be constructed with the com-

bination and development of more interesting comonads,
combinators and combinations of comonads.

5.4 Asynchronous effects

One of the requirements of the real-world application is
a way of properly handling effects (synchronous or asyn-
chronous ones), and a way of interleaving effectful actions
with state transitions of UI components in response to
user interaction.
The proper way of achieving this goal is to encode

these effects in the state transitions themselves, that is,
in the Transition data type. It is known that monad
transformers are an appropriate tool for adding new com-
putational features to existing monads. In this sense, we
need a way of transforming a monad that represents ef-
fects in the application by the Transition monad. That
is, we need to make Transition into a monad trans-
former.
From Kmett [2011b] it is known that such a monad

transformer exists, that is, a parametrized data type
that is itself a monad transformer whenever its param-
eter is a comonad. Such a data type is quite similar to
Transition:

newtype TransitionT w m a = TransitionT {
runTransitionT :: forall r. w (a -> m r) -> m r
}

The Monad and MonadTrans instances for this data
type are given by Kmett [2011b].
Through the use of these instances (mainly the

MonadTrans one), it is possible to perform state tran-
sitions, then side effects in a base monad m, then per-
form again new state transitions based on the possible
responses of these side effects.
This behaviour is used in the NewFeedModal compo-

nent, where the user is presented a modal window con-
taining a text box accepting a URL for an RSS feed.
When the “Search” button is clicked, a state transition
is performed in order to replace the button by an image
that indicates the downloading process. When the net-
work request is finished, and the RSS feed metadata is
fetched, a new state transition is performed, displaying
the next step of the form filled with the fetched data:
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Figure 2: When the “New feed” button on the side navi-
gation menu is clicked, an Optional component switches
its state in order to display a modal window.

Figure 3: When the “Search” button is clicked, the
modal window component performs a state transition
and runs an asynchronous HTTP request to the provided
address to retrieve metadata for the RSS feed.

Figure 4: When the HTTP request is completed, the
component performs another state transition in order to
display the next step of the form.

5.5 Communication patterns

The only requirement of the real-world application left to
fulfill, and perhaps the most important one, is a method
for composed and combined user interface components
to communicate between themselves. The exchange of
encapsulated data is one of the most challenging aspects
of heavily modularized systems Myers [1993].
Until now, the only two ways two components could

communicate with each other are: through state transi-
tions lifted into a component, and through operations
provided by a comonad for calculating data. In the case
of the Store comonad, one of these operations is called
pos, and provides a way of extracting the current state
of the comonad:

pos :: Store s a -> s
pos (Store _ state) = state

However, as shown in Xavier [2017a], in order for an-
other component to access the state of any other, it must
naturally have access to its context. This can be done
in the case of composition of comonads with comonad
transformers by applying the extend function to the
child comonad and providing its context to the parent
comonad:

extend :: Comonad w => w a -> (w a -> b) -> w b
extend = map f . duplicate

This is, nevertheless, a limiting approach, as the most
interesting forms of composition are given by comonad
combinators. Also, because in most cases, for the sake of
encapsulation, the comonads cannot provide such opera-
tions for the public access of their internal state.

It is necessary, then, to develop a new method for mod-
elling communication between independent user interface
components.

In Section 2, we defined a user interface component as
a comonad w containing interface representations of type
a. It is possible, however, to change this definition to suit
the need for a better model of communication between
components. By introducing what we have named a com-
munication functor f to this definition, a user interface
component as a comonad, thus, becomes a value of type
w (f a). This communication functor f can model dif-
ferent communication architectures between components
depending on its type.

Child-to-parent communication. In the case where
f is the (,) q functor for a given type q, it abstracts
child-to-parent communication. That is, when a parent
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component applies the extract function to extract the
interface representation contained by a child comonad,
another value of type q is returned alongside the interface
representation of type a. This value q may be encoded
in the child component and may be calculated out of its
internal state, depending on its implementation.

Parent-to-child communication. In its turn, in the
case where f is the (->) p functor for a given type p,
it abstracts (a limited form of) parent-to-child commu-
nication. That is, when a parent component applies the
extract function to extract the interface representation
contained by a child comonad, a function from p to in-
terface representations of type a is returned. The parent
component must, then, supply a value of type p in order
to finally have access to the interface representation of
its child component.

This type of communication encoded by the (->) p
functor is, however, limited in the sense that the value of
type p supplied to the child component cannot affect its
internal state, only part of its interface representation.

Bidirectional communication. Two bidirectional
communication schemes may be obtained based on the
previously defined ones. By composing the two functors
(,) q and (->) p in both directions, two new functors
are obtained:

type Bidirectional1 p q a = p -> (q, a)
type Bidirectional2 p q a = (p -> a, q)

It is important to notice that Bidirectional1 is iso-
morphic to the State monad and that Bidirectional2
is isomorphic to the Store comonad. Both State and
Store will be used instead of the formers from now on.

The State monad, then, defines a communication ar-
chitecture that, provided an input of type p from a par-
ent component, produces an output of type q from the
child component along with its interface representation
of type a.

The Store comonad, in its turn, defines a communi-
cation architecture that produces an output of type q
independent of any input, and an interface representa-
tion of type a that depends on an input of type p.

It is, however, obvious that the communication scheme
described by the State data type is more powerful than
the one described by Store.

6 Conclusions and future work

The approach to the development of user interfaces de-
scribed in this work is very powerful. As shown in in Free-
man [2016b]; Xavier [2017a], comonads can describe sev-
eral different user interface paradigms, and as shown in
this work and in Freeman [2018], more interesting comon-
ads or UI architectures may be discovered through ex-
perimentation.
Besides that, by using such classical and somewhat

ubiquitous structures such as comonads, this method can
leverage a highly developed mathematical framework for
talking about user interfaces. This can help better un-
derstand the nature of user interfaces and UI-based ap-
plications, as well as better understanding why some tra-
ditional problems in the development of user interfaces
are difficult to solve while some are easier to handle.
When compared to other declarative approaches to

the development of user interfaces such as the React li-
brary [Facebook, 2013] or the Elm language [Czaplicki,
2012], our method is not only able to reproduce the same
architecture of these other approaches, but also to mix
and match them in the same application according to the
user’s needs [Xavier, 2017a]. This enables the possibil-
ity of separate applications developed by different teams
using different architectures to be merged into a single
application if needed.
However, the ergonomics of the method does not yet

correspond to its full potential. Being it a novel method, it
is probably not yet ready for use in a production environ-
ment, as some common tasks are still boilerplate-heavy
and others are still difficult to understand. For the most
common use cases, however, as this work demonstrates,
this approach is perfectly suitable and provides the de-
veloper immense power and, sometimes, also agility.

As a direct consequence of using comonads to repre-
sent user interfaces, some difficulty may arise. One of the
strongest pain points of this approach is the necessity of
a static construction of the (lazily evaluated) space of all
possible future states of the whole user interface. The use
of comonadic combinators does help remedy or ease this
process. Nevertheless, the development of new comonads
that may be significant as user interface components is
hindered by this difficulty.

One other consequence of this fact and also related to
the prior construction of the space of all future states is
the impossibility for child components to be recreated
by their parent components during their life cycle. This
“resetting” of components must be encoded as a state
transition available to the parent components.
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6.1 Future work

The amount of possibilities for future work highlighted
throughout this project are rather large. Ranging from
the experimentation with interface representations to cat-
egory theoretical research, the main opportunities are
related to the model itself and its use, as its application
has been enough proved successful.

Simultaneously explore different components in
different rendering structures. It must be investi-
gated whether it is possible to simultaneously execute
different, independent user interface components into dif-
ferent rendering structures while account for their com-
munication. This result could provide useful insights on
the interpretation of programs.

Further investigate communication functors. It
has been shown that different choices of communication
functors imply different communication architectures be-
tween components. The ones studied in this work, how-
ever, arise from the tuple-function adjunction in Haskell.
Perhaps more interesting communication schemes could
be derived from other interesting choices of communica-
tion functors.

Investigate different component life cycles. Cur-
rently, the life cycles of UI components are intrinsically
bounded to the way they are executed and composed.
Further investigation in this matter, be it by studying
new ways of executing UI components or by studying
new forms of composition, could reveal more interesting
and different behaviours for components.

Category theoretical interpretation to pairings of
functors. From the type signatures, it can be recog-
nized that a pairing between two functors is a natural
transformation from their Day convolution to the identity
functor. Further investigation on the category theoretical
meaning of pairings could produce interesting develop-
ments in this research.

Automatic wiring of communication functors of
multiple components. In this work, the introduction
of communication functors made it possible to pass infor-
mation between composed components. This approach,
however, requires manual handling of the information
components produce or request. By automatically han-
dling this information passing, some boilerplate could be
avoided.
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