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Abstract

User interfaces (UIs) are difficult to implement. They are important parts of real-world
applications, which, traditionally, have been developed in a heavily imperative style.
Recently, however, many techniques for the building of declarative user interfaces have
come into play. These techniques, for the most part, define different architectural styles
or paradigms for implementing and organizing user interfaces in applications. Inspired
by this, Freeman [2016b] makes use of category-theoretical structures called comonads in
order to develop a pure functional model that summarizes and abstracts many different
user interface paradigms and all their subtleties, whereby each different UI paradigm (or
architecture) corresponds to a different comonad.
This thesis presents itself as an extension of the work of Freeman [2016b] in the

sense that we validate the suitability of the model proposed in that work for real-
world applications. For that matter, we extend this model to support side effects and
composition of user interfaces as these are indispensable tools to develop useful user
interfaces for complex applications. Furthermore, we demonstrate that our extended
model can be used for the development of real-world applications by building a fabricated
but somewhat complex application that could be used in the real world.
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1 Introduction

User interfaces are not only difficult to design, but also to implement. According to
Myers [1993], having to react to user input on real-time in a multiprocessed environment
while having to account for modularity and correctness, might explain the complexity of
the tools available to programmers for the development of user interfaces (UIs).

One main cause for the difficulty and complexity of the tools for graphical user interface
(GUI) programming may be the lack of a unified formal basis or formal abstract model
for user interfaces, which is consistent with the way GUIs are used and developed in the
industry. Libraries for GUI programming are often described in informal terms and lack
constructs for combination and composition of interface components as these libraries
rely often on mainly imperative models.
But in the recent years, there can be seen a growing interest in languages, libraries

and techniques for the development of declarative user interfaces. And alongside the
development of these, a handful of architectures and architectural styles for declarative
GUIs has been created. In spite of these developments, in this thesis we make use of a
very recent approach to UIs by Freeman [2016b] that attempts to generalize these many
architectures under a single model. In this work we extend the work of Freeman [2016b]
in order to verify its suitability for the development of complex real-world applications.
It is expected from the reader of this report to have some familiarity with the basic

concepts of functional programming and of the Haskell language, as well as with the
syntax of the language. For reference and instruction in these matters, we recommend
the work of Bird & Wadler [1988]. More advanced concepts used throughout this report
are detailed in Chapter 2.

1.1 Overview

Several architectures and architectural styles have been developed in order to attack the
problem of building complex software systems while accounting for modularity. One most
prominent example comes to mind when talking about user interfaces, and that is the
model-view-controller architectural pattern, or MVC, which emerged in the development
process of the user interface for the Smalltalk-80 programming environment [Krasner
et al., 1988], and whose several related architectural patterns are still in use up to date
[Bragge et al., 2013], mainly in object-oriented programming languages. The MVC and
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1 Introduction

its related architectural patterns are, however, inherently imperative and depend on
imperative techniques such as data binding for output rendering.

On the other hand, declarative approaches to interactive user interfaces only started to
gain traction with the emergence and popularization of Virtual DOM [Psaila, 2008] and
Web Components [Russel, 2011], which brought up a consistent step up into the solution
of the old problem of modularization and separation of concerns in GUI programming with
techniques for the web. And with this recent popularization of the declarative paradigm,
the Web has seen a strong surge of declarative languages, libraries and frameworks for
the building of user interfaces.
But despite all the advances in the last years for the construction of user interfaces,

there still exists many different models and architectures whose only commonality is
their sharing of a declarative approach. It is still difficult to reason about user interfaces
in a general way, without having to resort to a specific framework.

With this thesis we aim to attack these problems by making use of a general approach
to user interfaces developed by Freeman [2016b] that is capable of formalizing and
summarizing many different user interface architectures under a same single model.
We expect to study, formally reproduce and validate the correspondences between
architectures and the model proposed by Freeman [2016b] by using such model to build
interactive programs for the Web, with the possibility of switching between architectures
in a fairly easy way.

1.2 Related work

Declarative user interfaces are different from imperative ones in the sense that a greater
focus is given to the specification of what shall be rendered to the user, instead of how
to do it. Most of the time, models for declarative user interfaces treat UIs as a function
from some state or data to UI elements, be them text, a description of pixels on a screen
or elements of a DSL such as HTML.
The most traditional approaches to declarative UIs are based on Functional Reactive

Programming (dubbed FRP). These models often treat a user interface as a composition
of a series of functions that react to and handle input signals over time, producing the
description of the current interface as output. Functional programming languages are a
good use for such models, given their ease for expressing composition of functions as well
as for creating domain specific languages (DSLs) of combinators.

However, one of the most prominent examples of modern approaches to declarative user
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1 Introduction

interfaces is the Elm language [Czaplicki, 2012a], which was heavily influenced by some
approaches to user interfaces based on FRP and by the Flapjax language of Meyerovich
et al. [2009]. The Elm language, in turn, influenced a subsequent generation of libraries,
languages and architectures for GUI programming, such as React [Facebook, 2013] and
PureScript [PureScript, 2013]. React is an example of a library that attempts to solve
some problems present in the Elm architecture, namely the absence of local (component)
state and boilerplate in composition of components.

As an attempt to summarize and generalize all these different models or architectures
for GUI programming in declarative languages, Freeman [2016b] proposed the use of
structures called comonads and monads in order to represent spaces of user interfaces and
movements in this space, respectively. These structures are known in the field of theory
of programming languages, especially to those familiar with functional programming,
as they provide means to structure different forms of computations in these languages
[Uustalu & Vene, 2008; Wadler, 1995].
These concepts will be further detailed in Chapter 2, but for now the reader may

bear in mind that comonads are traditionally used for structuring context-dependent
computations, whereas monads are commonly used for structuring context-producing or
side-effecting computations – and side-effecting computations are impure ones, that is,
those which do not preserve the property of referential transparency.

1.3 Outline

This work consists of five main chapters. In Chapter 2 a short introduction to common
patterns of the functional programming paradigm and their relationship to category
theoretical concepts is given with focus on the relationship between both domains as a
means to introduce the reader to the concepts of monads and comonads as well as to the
possibilities of its applications.

In Chapter 3 we present a concise review the work of Freeman [2016b], explaining the
concept of pairings of functors and the take on comonads as a pointed space of values,
which will, in turn, be used to model a pointed space of user interfaces.

The main chapter of this thesis is perhaps the Chapter 4 where we report the main
contributions of this thesis: our further explaining and extension of the work of Freeman
[2016b] as to model side effects and composition of user interfaces.

InChapter 5 we develop a simple application (a personal task management application
for the Web browser) using the PureScript [PureScript, 2013] language. We give the
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1 Introduction

description of this small application, a truly short introduction to the language is given by
comparison with the Haskell language and a report of the development of this application
using different user interface architectures modelled under our single general approach.
Furthermore, in Chapter 6 we evaluate the model developed, analysing the overall

improvements over the work of Freeman [2016b], the current limitations of our approach
as well as the possible threats to this model. Several possibilities for future work and
room for improvement or experimentation over the proposed model are also described.

4



2 Pure functional programming and category theory

A declarative paradigm, functional programming focuses on the what aspect of program-
ming (instead of focusing on the how, as imperative paradigms do), and, as described by
Hughes [1989], it is a style of programming in which a program is a function defined in
terms of other functions through composition or application (of functions), which are, in
turn, the primary methods for the construction of computations.
Pure functional programming is a stricter version of traditional FP that imposes

some restrictions mostly on mutability and side effecting computations in exchange
for a powerful property: referential transparency (or purity). Referentially transparent
expressions, functions or programs allow for the replacement of their names by their
definitions (as with mathematical expressions) and are, then, semantically comparable
and produce no side effects. Most of the time enforced through the use of type systems,
this property enables the use of equational reasoning in the design, construction, and
verification of programs and is, then, an obvious contributor to the claim that functional
languages help building less defectuous programs.
Although severely limited when compared to the abusive freedom of imperative

paradigms, pure functional programming draws inspiration for overcoming these limita-
tions from many fields of the mathematical sciences by using mathematical constructions
and laws for building abstractions, most notably from the fields of abstract algebra and
category theory. With this, not only do we keep properties such as referential transparency
as well as obtain new ones derived from these mathematical abstractions.
The source of many abstractions in functional programming, category theory is a

mathematical formalism that is essentially a “theory of composition”. It studies objects
and morphisms between them; both as primitive and atomic concepts. Category theory
is highly relevant to the study of programming languages as it provides a formalized
language for stating abstract properties of structures by means of the analysis of universal
relations. Category theoretical concepts are used in the context of functional programming
for modelling useful concepts from composable structures to sequential and side effecting
computations, as we shall show the reader through the course of this chapter. We shall
not cover these concepts from category theory in this report, but only show how they are
applied to pure functional programming.

5



2 Pure functional programming and category theory

2.1 Types and functions as a category

Statically typed functional languages have their deepest origins on the simply-typed
λ-calculus [Barendregt et al., 2013], an extension of the original untyped λ-calculus by A.
Church. They model functions as values of some type, namely of a function type, which is
constructed from two other types: the type of the domain and the one of the codomain
of the function. A function type is, then, a type constructor.

More interesting is the fact that the simply-typed λ-calculus (and some relevant aspects
of the Haskell language) can be modelled – for the intents of the analysis presented here –
by the category-theoretical concept of a category [Asperti & Longo, 1991], what leads us
to the following definition:

Definition 2.1.1. A category C is given by a collection C0 of objects (writtenA,B,C, . . . )
and a collection C1 of morphisms or arrows (written f, g, h, . . . ) between these objects,
whereby:

i. Every morphism has a domain and a codomain which are objects in the same
category; one writes f : A→ B if A is the domain of f and B is the codomain, or
A = dom(f) and B = cod(f);

ii. Given objects A, B, and C, and two morphisms f : A→ B and g : B → C (note
that dom(g) = cod(f)), the composition of both morphisms must be defined and is
written gf or g ◦ f : A→ C (read g after f);

iii. Furthermore, the composition operation must be associative, that is: given f : A→
B, g : B → C and h : C → D, it is true that h ◦ (g ◦ f) = (h ◦ g) ◦ f = h ◦ g ◦ f ;

iv. And for every object A there exists an identity morphism idA or 1A, such that, for
every f : A→ B and g : B → A, we have that f ◦ 1A = f and 1A ◦ g = g.

Example 2.1.1. The canonical example of a category is that of sets: the Set category.
In Set, every object is a set, and functions between sets are the morphisms, with specified
domain and codomain. Composition of morphisms is composition of functions and the
identity arrows are the identity functions of each set.

A category for Haskell

Being a statically typed language, in Haskell, every expression has a type. By applying the
categorical reasoning to analyze the Haskell language, one may be able to verify important
properties or to come up with interesting abstractions as stated in the introduction for

6



2 Pure functional programming and category theory

this chapter. It is, then, natural a process to define a category for this language: the Hask

category. Apart from the fact that, in Haskell, an expression may not terminate (yielding,
thus, a ⊥ value), mathematical functions and Haskell functions may be considered
identical, so for the intents and purposes of the analysis presented in this work, we shall
consider the Hask and Set categories as equivalent.

In this sense, the type of both values a and b below (that is, Int and Maybe Int) are
objects in the Hask category:

a :: Int

a = 42

b :: Maybe Int

b = Just 10

Morphisms (or arrows) in this category are Haskell functions of any sort. Some difficulty
may arise as Haskell functions are also types, and thus, are objects in the Hask category.
This does, however, simplify the analysis of curried functions, as we can treat them as
morphism from an object representing the type of the first argument to the remaining
function type. Thus, the type of the value c below may be considered either a morphism
from [Int] to Int or an object [Int] -> Int:

c :: [Int] -> Int

c = (+1) . sum

Identity morphisms and composition of morphisms are also well-defined operations for
all values of every type in Haskell. They can be defined through the use of parametric
polymorphism, as in:

id :: a -> a

id x = x

(.) :: (b -> c) -> (a -> b) -> (a -> c)

g . f = \x -> g (f x)

2.2 Containers as functors

It was shown that types and functions in Haskell have a category theoretical formalization.
But what about type constructors? That is, what is Maybe or [] in a categorical
sense? They are a part of a structure called a functor. In category theory, functors are
simply stated as structure-preserving morphisms between categories themselves (that is,
homomorphisms between categories).

7



2 Pure functional programming and category theory

Definition 2.2.1. Let C and D be categories. A functor F : C → D maps objects
A,B, . . . of C to objects F (A), F (B), . . . of D. In addition to this, a functor must also
map morphisms f : A→ B in C to morphisms F (f) : F (A)→ F (B) in D such that:

i. F (1A) = 1F (A), that is identity morphisms are preserved, and
ii. F (g ◦ f) = F (g) ◦ F (f), that is composition of morphisms is preserved.

Example 2.2.1. An endofunctor is a functor from a category C to itself. These specific
types of functors are used in the Haskell language through the use of type constructors
(which map objects – or types – from Hask to Hask) and through the Functor type
class (which maps morphisms – or functions):

class Functor f where

fmap :: (a -> b) -> f a -> f b

It is important to notice that implementations (or instances) of the Functor type class
must follow the two rules from definition 2.2.1, namely preservation of identity morphisms
and preservation of composition of morphisms.

Functors (or endofunctors) in Haskell abstract the notion of a container or that of a
result of a computation. Furthermore it abstracts the capability of lifting or applying
functions to the values (if any) inside a container through the use of fmap.

Example 2.2.2. The Identity functor in Haskell is simply a unitary container and may
be considered equivalent to the unwrapped value in some cases:

newtype Identity a = Identity a

instance Functor Identity where

fmap f (Identity a) = Identity (f a)

Example 2.2.3. The Maybe functor can be thought of as a container that may or may
not contain a value, or as the result a computation that might have failed:

data Maybe a = Nothing | Just a

instance Functor Maybe where

fmap _ Nothing = Nothing

fmap f (Just a) = Just (f a)

8



2 Pure functional programming and category theory

2.3 Polymorphic functions as natural transformations

In category theory, a higher abstraction than that of functors is that of natural trans-
formations. As we have seen that types and functions in Haskell do form a category,
and “functions” between types, that is, type constructors (along with the corresponding
mapping of morphisms given by fmap) do correspond to functors from category theory,
which are in essence morphisms between categories, we are left to consider what are
morphisms between functors themselves.

Definition 2.3.1. For any given functors F and G, from a category C to a category D,
a natural transformation α from F to G is a family of morphisms in D such that:

i. For every object A in C, a component of α at A is a morphism αA : F (A)→ G(A)

in D; that is, the natural transformation maps objects in C transformed by the
functor F (which are objects in D) to objects transformed by the functor G.

ii. For every morphism f : A→ B in C, the components of a natural transformation
must obey what is called the naturality condition: αB ◦ F (f) = G(f) ◦ αA.

Example 2.3.1. Natural transformations in Haskell can be represented as morphisms
between parametrically polymorphic applications of type constructors, as in:

alpha :: F a -> G a

The naturality condition is granted for free in Haskell by parametric polymorphism.
One may also be able to define an infix type operator for natural transformations in
Haskell (with the necessary language extensions activated):

type f ~> g = forall a. f a -> g a

alpha :: F ~> G

Corollary 2.3.1. There may be multiple natural transformations from a given functor
to another one.

Example 2.3.2. There are multiple functions that map values of type [a] to Maybe a:

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead (a:_) = Just a

nothing :: [a] -> Maybe a

nothing _ = Nothing

9



2 Pure functional programming and category theory

2.4 Monads

The reader was already introduced to the concept of monads in functional programming
in the introduction chapter of this report. The application of said concept to computer
science was first discovered by Moggi [1991] who used monads as a means to model
sequential computations. Later Wadler [1995] studied its applications to functional
programming as a “convenient framework for simulating effects found in other languages”.

Definition 2.4.1. In category theory a monad is a triple (T, η, µ), where T is an
endofunctor from a category C to itself, and η and µ are natural transformations. The
first natural transformation, η, maps the identity endofunctor on C (1C) to T and can
be written as η : 1C → T . Whereas the second natural transformation, µ, maps a
composition of T with itself to T and can be written as µ : T ◦ T → T or µ : T 2 → T .
Both natural transformations must be defined such that, for every object A in C:

i. µA ◦ T (ηA) = µA ◦ ηT (A) = 1T (A)

ii. µA ◦ T (µA) = µA ◦ µT (A).

Example 2.4.1. Given that, in Haskell, the identity functor must not necessarily be
represented as a type constructor, a monad may, then, be represented by the following
type class (notice the requirement that m be an endofunctor):

class Functor m => Monad m where

return :: a -> m a

join :: m (m a) -> m a

bind :: (a -> m b) -> m a -> m b

join = bind id

bind f = join . fmap f

The first two functions of the class are the η and µ natural transformations, respectively.
Moreover it is usual to define a helper function called bind (aliased to the operator »=
with its arguments flipped) for reasons of both performance and ergonomics. Besides
that, a monad in Haskell must follow rules derived from those stated in definition 2.4.1:

i. bind return = id

ii. bind f . return = f

iii. bind f . bind g = bind (bind f . g)

Example 2.4.2. An example of a monad is the Maybe type constructor (as defined in
example 2.2.3), which, as a monad, may be interpreted as a sequential computation that
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2 Pure functional programming and category theory

might fail, where the failing can be considered a side effect, that is, an impure expression,
from the point of view of the computation itself:

data Maybe a = Nothing | Just a

instance Monad Maybe where

return a = Just a

bind _ Nothing = Nothing

bind f (Just a) = f a

Example 2.4.3. By using the monad instance for Maybe defined above and the safeHead
function defined in example 2.3.2, one may construct a potentially failing computation
that gets the second element in the first list contained in a list of lists. The functions
below demonstrate the use of the infix operator »= (as an alias to the bind function with
its arguments flipped) as well as the of do-notation as syntactic sugar to the use of bind:

data User = User { _name :: String, _friends :: Maybe [User] }

firstFirstFriend :: User -> Maybe User

firstFirstFriend user = _friends user >>= safeHead >>= _friends >>= safeHead

firstFirstFriend_do :: [[a]] -> Maybe a

firstFirstFriend_do user = do

friends <- _friends user

firstFriend <- safeHead friends

friendsOfFirstFriend <- _friends firstFriend

safeHead friendsOfFirstFriend

The reader can observe that both variations of the firstFirstFriend function are
equivalent, and they will fail as a computation (thus return a Nothing value) if either
one of each subcomputation fails; that is, failed computations are propagated. This is
the behavior of a monad: a context-producing (or side-effecting) sequential computation.

11
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2.5 Comonads

All said, the most important concept in this theoretical chapter of this report is that of a
comonad, to which the reader had already a short introduction in Section 1.2. Comonads
are closely related to monads in category theory (though we shall not detail this relation)
and have also been studied as a model for computations [Brookes & Geva, 1991], even
though they model different types of computations as those that monads do [Uustalu &
Vene, 2008].

Definition 2.5.1. In category theory, a comonad is a triple (D, ε, δ), where D is an
endofunctor on a category C and ε and δ are natural transformations mapping D to the
identity functor on C and D to a composition of D with itself (written D ◦D or D2),
that is, ε : D → 1C and δ : D → D2 are natural transformations such that:

i. T (εA) ◦ δA = εT (A) ◦ δA = 1T (A).
ii. T (δA) ◦ δA = δT (A) ◦ δA.

Example 2.5.1. In Haskell, a comonad is given by a type constructor that implements
the Comonad type class:

class Functor w => Comonad w where

extract :: w a -> a

duplicate :: w a -> w (w a)

extend :: (w a -> b) -> w a -> w b

duplicate = extend id

extend f = fmap f . duplicate

The extract function represents the ε natural transformation, whereas duplicate

represents δ from Definition 2.5.1 and extend is a helper function defined in terms of
fmap and duplicate. Thus, for an instance of the Comonad type class to be considered
a valid comonad in Haskell, it must obey the following rules derived from the category
theoretical rules for a comonad:

i. extend extract = id

ii. extract . extend f = f

iii. extend f . extend g = extend (f . extend g)

Interpretation of comonads as computations. Comonads in functional program-
ming provide means to structure context-dependent notions of computations [Uustalu
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2 Pure functional programming and category theory

& Vene, 2008]. In this sense the reader can notice the duality in play between the
interpretations of monads and comonads as well. In one hand, monads can model
context-producing (or side-effecting) sequential computations, in the other, comonads
can model context-dependent sequential computations.

Another valid (and not at all exclusive) interpretation is that comonads can represent
computations within a context, that is, computations from a global context to a local
value, which may be extended to the whole, thus producing a new global context. Two
of the most acknowledgeable examples of this are that comonads form a good model for
representing cellular automata or operations for image manipulation.

Example 2.5.2. One good example of a comonad is the Stream comonad, representing
an infinite (lazy) stream. It is a type constructor together with an instance of the Comonad
type class defined as such:

data Stream a = Cons a (Stream a)

instance Functor Stream where

fmap f (Cons a as) = Cons (f a) (fmap f as)

instance Comonad Stream where

extract (Cons a _) = a

duplicate stream@(Cons a as) = Cons stream (duplicate as)

The Comonad instance for the Stream type constructor allows us to extract the first
value of a stream as well as to apply a function to all the whole stream, where this
function has access to the future values of the stream and produces a single local value.
This allows us, for instance, to define a function that adds the first and the second
elements of the stream and then extend this function to the whole stream:

sumWithNext :: Num a => Stream a -> a

sumWithNext (Cons a (Cons a’ _)) = a + a’

stream :: Stream Int

stream = Cons 1 (Cons 2 (Cons 3 ...))

stream’ :: Stream Int

stream’ = extend sumWithNext stream -- Cons 3 (Cons 5 (Cons 7 ...))

Not only that, but, as stated already, comonads allow us to define context-dependent
sequential computations. So one is able, for instance, to define a function that calculates

13



2 Pure functional programming and category theory

the first three elements of a stream while having access to the whole context of the first
three substreams. Given that =» is an alias for extend (with its arguments flipped), such
a function could be defined as the first3 function below:

next :: Stream a -> a

next (Cons _ (Cons a _)) = a

first3 :: Stream a -> [a]

first3 stream =

let stream2 = stream =>> next

stream3 = stream2 =>> next

in [extract stream, extract stream2, extract stream3]

Given the recent exposition and popularity this abstraction has been gaining in the
past few years, some proposals for a syntactic sugar for comonads, equivalent to that of
do-notation for monads have appeared. The most notable one is the proposal of Orchard
& Mycroft [2012], whereby the first3 function defined above could be written as:

first3_codo :: Stream a -> Stream [a]

first3_codo = codo stream =>

stream2 <- next stream

stream3 <- next stream2

[extract stream, extract stream2, extract stream3]

2.6 Conclusions

Functional programming is a useful paradigm with strong relations to mathematics. This
proximity provides reliable tools and properties for constructing programs. Category
theory on the other hand has been shown to be a powerful tool for analysing concepts
of functional programming. Furthermore, the category-theoretical framework can be
used for building new abstractions for programming languages as well as for recognizing
recurring patterns such as functors or monads. Despite its innate difficulty, working
under the toolbelt of this field of mathematics is convenient for those doing research over
programming languages.
The concept of comonads detailed in section 2.5 is known to be essentially used in

the literature for modelling context-dependent computations; but in this thesis, another
point of view on these structures will be explored: that comonads may represent spaces.
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3 Comonads as spaces

The concept of a comonad plays a major role in this work. It has been shown that they
have usually been used throughout the literature in order to abstract context-dependent
computations, such as the calculation of the value of a cell given its neighbours in cellular
automata, or the calculation of the value of a pixel of an image given its neighbours
during an operation that blurs an image. In both examples, these context-dependent
(local) computations, when applied (or extended) to their global context – the whole
automata and the whole image, respectively –, produce new, modified contexts.

This notion of context, in some cases, can be understood as a neighbourhood, or as a
pointed space, as of Freeman [2016b], that is, a space comprised by points, which are
elements of a set X, where every point x ∈ X has a neighbourhood, and where there is a
distinct point x0 called the base point. Pointed spaces can give an intuition to comonads,
since the set X can be thought of as the type a encapsulated by a comonad, and the base
point x0 is the point retrieved by the extract operation. In its turn, the neighbourhood
of a value in a comonad may be accessed through operations specific to each particular
comonad (e.g. the next operation of the Stream comonad from Example 2.5.2).

With this intuition in mind, Freeman [2016b] proceeds to use comonads for representing
(pointed) spaces of states of an application, where the current state of the application
can be retrieved by extracting the value out of the comonad (with the extract function),
and the neighbourhood of the current value gives the possible future states for the
application. In this way, movements in this space would correspond to state transitions
in an application, and distinct comonads may produce different spaces of states with
different possibilities for movements.

3.1 Pairings of functors

Before introducing the reader to the model developed by Freeman [2016b], the concept
of a pairing of functors must be presented.
The first appearance of such concept in the literature is through what Kmett [2008]

defines as “dual functors”, defined in Haskell through the use of a Dual type class, which
can be alternatively but equivalently defined as a type synonym, as in the Pairing type
of Freeman [2016b]:

type Pairing f g = forall a b. f (a -> b) -> g a -> b

15
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In this thesis, however, we have used the definition for a pairing given by Kmett [2008]
but with a different name:

Definition 3.1.1. Given two Haskell functors f and g, a pairing between these functors
is an instance of the following type class:

class Pairing f g | f -> g, g -> f where

pair :: (a -> b -> c) -> f a -> g b -> c

A good intuition for a pairing of functors is that, when it exists, it says something about
the structure of both functors when they are compared and put together: that their
structures match in some way and can annihilate each other yielding, then, values of the
types encapsulated by both.

Example 3.1.1. The most trivial example of a pairing is the pairing between the
Identity functor (as defined in Example 2.2.2) and itself, which simply applies the values
encapsulated by both functors to the supplied function:

instance Pairing Identity Identity where

pair f (Identity a) (Identity b) = f a b

Example 3.1.2. Another good example of what a pairing could be is the pairing between
the ((->) a) and ((,) a) functors, that is, between the function and tuple functors,
respectively. It can be understood as the correspondence between curried and uncurried
functions; that is, the tuple provides two values, where one can be used as input for the
function – which, in turn, produces the wanted output value for the pairing function –,
and the other fits as the second input for the pairing function:

instance Pairing ((->) a) ((,) a) where

pair f g (a, b) = f (g a) b

By using the pairing defined above, one can, for example, implement the uncurry

function from Haskell’s standard library:

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry = pair ($)
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3 Comonads as spaces

3.2 Exploring comonadic spaces with pairings

One may recall from the introduction of this chapter – where the analogy between
comonads and pointed spaces was presented –, that Freeman [2016b] makes use of
comonads to represent the space of states of an application. And as such, it is desirable
to be able to transition between the current state of an application and a possible future
state, having, then, movements in this comonadic space.
Freeman [2016b] makes use of monads (detailed in Section 2.4) in order to express

movements inside spaces described by comonads, and, by combining a comonad w with a
monad m, a pairing between both “gives a way to explore the data in a comonadic value”.
To better understand the possibility of moving around in a space described by a

comonad, we can think of the duplicate function from the Comonad type class (described
in Example 2.5.1). The intuition behind the use of duplicate is that, taking the pointed
space analogy as a reference, duplicating a comonad means adding another dimension to
the space and transforming it in such a way that, in every point x of the space, now lies
a replica of the space with x as the base point.

Example 3.2.1. To better illustrate this idea, recall the Stream data type and its
Comonad instance from Example 2.5.2:

data Stream a = Cons a (Stream a)

instance Comonad Stream where

extract (Cons a _) = a

duplicate stream@(Cons a as) = Cons stream (duplicate as)

By applying duplicate to a value of a Stream a type, one obtains a stream of streams,
where the first (or current) value of the stream is the original stream itself, and the future
values are the old future streams themselves. An example in pseudo-Haskell is that:

stream :: Stream Int

stream = Cons 1 (Cons 2 (Cons 3 ...))

streams :: Stream (Stream Int)

streams = duplicate stream

= Cons (Cons 1 (Cons 2 ...))

(Cons (Cons 2 (Cons 3 ...))

(Cons (Cons 3 (Cons 4 ...))

...))

That is, a stream can be viewed as an infinite tape, and duplicating this infinite tape
yields an infinite grid such as in the figure below:
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1 2 3 4 5
(a) A stream of integers can be thought of

as an infinite tape.
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(b) Duplicating a stream yields a
displaced infinite grid.

Figure 3.1: Visualization of the duplication of a Stream comonad.

3.2.1 Comonads as spaces and monads as movements

By referring to Example 3.2.1 and to Figure 3.1b, the reader can observe that a movement
in the space describe by the Stream comonad can be described as picking a specific point
(a sub-tape) in the duplicated space. That is, thinking in terms of states of an application,
by duplicating the current space of states, one obtains a space of all future spaces of
states; and, in order to move to a future state one must simply pick one of the future
spaces of states.

That’s where pairings between comonads and monads come in. By pairing a comonad
with a monad one is able to use monads to describe movements in the space, that is, in
order to extract a new space from a (duplicated) space of spaces with the function move

defined below:

move :: (Comonad w, Pairing m w) => w a -> m b -> w a

move space movement = pair (\_ newSpace -> newSpace) movement (duplicate space)

Example 3.2.2. By defining a monad which can produce a pairing against the Stream

comonad we shall be able to move inside its space. We call this monad Sequence and
define it as such (its Functor instance is omitted):

data Sequence a = End a | Next (Sequence a)

instance Monad Sequence where

return = End

bind f (End a) = f a

bind f (Next next) = Next (bind f next)
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In this way, the pairing between the Stream comonad and the Sequence monad can be
defined as:

instance Pairing Sequence Stream where

pair f (End a) (Cons b _) = f a b

pair f (Next next) (Cons _ stream) = pair f next stream

Given these definitions, in order to displace the space defined by a Stream comonad,
one must simply apply the function move defined in Section 3.2.1 to the space and a
Sequence value describing a movement:

stream :: Stream Int

stream = Cons 1 (Cons 2 (Cons 3 ...))

third :: Stream Int

third = move stream (Next (Next (End ()))) -- Cons 3 (Cons 4 (Cons 5 ...))

Thinking of a Stream value as a space of states in an application, it would describe
an application with a pre-defined sequence of states where the transition between states
(given by Sequence values) only allow for jumping to later states in this pre-defined
sequence, just as in a slide show application, where the user may only jump forward to
the next slides.

3.3 Conclusions

Comonads may provide a useful abstraction for structuring applications. The notion
of comonads as spaces of states of an application, allied to the notion of monads as
movements in a comonadic space (through the use of a pairing) is the basis for structuring
user interfaces using comonads. Different comonads provide different spaces (and different
specific pairing monads), which, in turn, may be used to model different architectures for
managing the state of an application.
Freeman [2016b] proposes several correspondences between specific comonads and

known architectures for user interface paradigms. As an example of this correlation,
we have seen an interpretation for the Stream comonad defined in Example 2.5.2 as an
interface whose states are given by a pre-defined sequence (such as in wizard applications),
and where the transitions between those states can be stated as simply choosing a next
state. This could represent an interface for a slide show, for example.
We have now, then, the basic framework for describing and using comonads for the

development of user interfaces.
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Having defined comonads as an abstraction for the space of states in an application, we
can extend this concept to use comonads as an abstraction for the space of user interfaces
in an application – as they, themselves depend on the state of the application.

4.1 Basic model

User interfaces may be of any type depending on which application is being developed.
They may be comprised of only text, pixels on a screen or HTML elements, for example.

As seen in Section 3.2.1, comonads may be a useful abstraction for the space of states
of an application, where the current state of the application is always accessible through
the use of the extract function of the Comonad type class. In this case, this space of
states becomes the state of the application itself. This provides a useful abstraction for
controlling how the states of the application may behave, as well as for talking about
different architectures for user interfaces, the core of this work.

4.1.1 User interface components

A component of an application (or of a user interface) is generally thought of as a
self-contained part of an application, that is, an distinct, individual part with its own
internal state. A component may have, as well, its own distinct set of operations, which
may expose its internal state or provide means to modify it.
Furthermore, user interfaces require user interaction. And as a response to a user

interaction, it is common to change state of the application, which, in turn, produces a
change in the interface being presented to the user. As we have seen that changes in the
state of UI component may be abstracted through movements in its space of states, if a
user interface component is represented by a comonad, movements, or user actions in
this component, are represented by a pairing monad. In this way, when the user interacts
with the interface, we want to be able to produce values of a pairing monad and use this
value to update the state of the application and move around in the space of states of
the component.
However, in order to dynamically update and maintain the state of an application

throughout its execution we need some additional mechanisms.
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4.1.2 Managing state

So far, we have seen comonads as an abstraction for spaces of user interfaces, where
changing the position in this space changes the interface being presented (by changing
the state). But how do we effectively manage the state of the user interface throughout
the execution of an application?

From Wadler [1995] we know that, in pure functional languages, maintaining UI state
usually demands the use of a monad. The user may not confuse this with using a monad
for moving around in the space of states of an application described by a comonad.

Example 4.1.1. As an example of using monads to manage state in an application,
consider a simple console application in which the following behaviour occurs in an
infinite loop: the user is presented a counter which displays a number whose value is,
initially, 0; then, the user is prompted to type any number, and, when a number is given,
it gets added to the counter.
Displaying the counter to the user and prompting her to type a number through

the console requires the use of the IO monad in Haskell. We can leverage this same
monad to maintain the state of this interface through the use of the IORef type, which
allows for mutable references in the IO monad, and through the newIORef, readIORef and
writeIORef functions, which allows for creating and manipulating mutable references.

By using the forever function for infinitely repeating a monadic action, this simple
application can be written as:

ui :: IORef Int -> IO ()

ui ref = do

counter <- readIORef ref -- read value from the reference

putStrLn (show counter) -- print it to the console
_ <- getLine -- reads a line from the console

writeIORef ref (counter + 1) -- increments the value of the reference

main :: IO ()

main = do

ref <- newIORef 0

forever (ui ref) -- infinitely runs the ui function

The ui function simply reads the value of a mutable reference (containing an Int value)
and prints it to the console. It then reads a number from the console’s standard input
and writes the read number to the mutable reference. This small process occurs, then, in
an infinite loop.
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4.1.3 Comonads as components of declarative user interfaces

By using a monad for managing the state of an application, we have, so far, all the
elements needed to define a general model for user interface components.
A feature of declarative user interfaces is that they provide means to declaratively

express events, that is, actions which may be executed when of specific user interactions
with the application. By abstracting over the interface type, we may leave this detail to
each specific rendering type, that is, to each specific type of declarative interface that
may be presented to the user.
Thus, we can define a generic user interface in terms of the type a of the declarative

specification of the interface and in terms of an action type representing the user actions
this interface supports in reaction to user interaction:

type UI action a = (action -> IO ()) -> a

That is, given an event handler of type action -> IO (), that is, a way to produce IO
() values when a user action (given by the action type) is dispatched by the interface
in response to user interaction, a declarative specification of the interface (given by the
type a) may be obtained.

Moreover, it is still possible to further abstract on this notion and eliminate the need
for relying on the IO type. We may generalize these definitions to work with any monad
base capable of managing the state of the interface:

type UI base action a = (action -> base ()) -> a

Therefore, basing ourselves on the notion of comonads as spaces presented in Chapter 3,
specifically in Section 3.2.1, we may, then, be able to abstract user interface components
as comonads containing user interfaces (of type UI action a). In this sense, this comonad
represents the space of all possible user interfaces for the component, with the current
interface, that is, the one being presented to the user, made accessible through the
extract function.

The shape of this space, that is, the possibilities for moving around inside it, represent
the operations of this component, and, as seen in Section 3.2.1, a pairing monad can
effectively give a way of moving around. Hence, we would like to use a pairing monad as
user actions in order to obtain the following definition for a user interface component:

22



4 User interfaces and comonads

Definition 4.1.1. Given the following UI type for a declarative user interface whose
actions are given by a monad m and whose internal state is managed by the base monad:

type UI base m a = (m () -> base ()) -> a

A user interface component is given by the following type:

type Component base w m a = w (UI base m a)

which is equivalent to:

type Component base w m a = w ((m () -> base ()) -> a)

where a represents a declarative specification of an interface, w is a comonad representing
the space of states of the component, m is a monad that pairs with the w comonad and
represents user actions in the interface, and base is the monad used to manage the
internal state of the component in an application. It must be noticed that the m () ->

base () type produces monadic actions in the base monad when a value of type m (),
that is, a user action or movement inside the space of states, is supplied.

In order to run this component, that is, in order to effectively use it in an application as
to produce a user interface, we must provide a way to explore the space defined by the
comonad w. This, in turn, needs an internal state managed by the base monad.

Definition 4.1.2. To explore a component given by a comonad (as a space of user
interfaces) means exactly initializing an internal state in an application with the com-
ponent itself, rendering (or presenting) to the user the current interface that can be
extracted from the component, and, finally, providing means to update the internal state
by moving around inside the component’s space when a monadic action of type m is
dispatched (by pairing the space and the action; see Section 3.2.1).

Thus, exploring a component means implementing a function of type:

explore :: (Comonad w, Pairing m w) => Component base w m a -> base ()

which is equivalent to:

explore :: (Comonad w, Pairing m w) => w ((m () -> base ()) -> a) -> base ()

Where base is the monad used for maintaining the component’s state throughout the
execution of the application.
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Example 4.1.2. As now we have all the tools needed for writing proper applications
where user interface components are represented by comonads, we shall rewrite the small
application from Example 4.1.1 using the Stream comonad defined in Example 2.5.2:

data Stream a = Cons a (Stream a)

As it is an infinite data type, we may define a function which, given an initial seed, is
able to lazily generate this infinite structure:

unfoldStream :: s -> (s -> (a, s)) -> Stream a

unfoldStream initialState next = Cons a (unfoldStream nextState next)

where

(a, nextState) = next initialState

Using these definitions, we are able to construct a UI component given a data type
that represents a declarative interface. We may define a declarative user interface in the
console as an infinite loop of displaying a text message to the user and prompting for
input. Thus, in each output-input cycle the user interface may be represented by the
following Console data type:

data Console = Console { _text :: String, _action :: String -> IO () }

Therefore, the incrementing counter interface from Example 4.1.1 may be reproduced
as a component whose space of user interfaces (or states) is given by the Stream comonad
and movements (or actions) in this space are given by the Sequence monad. The space
of interfaces may be defined, then, as an infinite stream of Console values:

counterComponent :: Component IO Stream Sequence Console

counterComponent = Cons (render 0) (Cons (render 1) (Cons (render 2) ...))

where

render :: Int -> UI IO Sequence Console

render state = \send ->

Console

(show state) -- display the current counter value

(\input -> send (Next (End ()))) -- move to next state when of user input

By using the unfoldStream function defined in this example to produce a lazily
evaluated infinite Stream value, the infinite stream of user interfaces can be properly
defined as:
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counterComponent :: Component IO Stream Sequence Console

counterComponent = unfoldStream 0 (\state -> (render state, state + 1))

where

render :: Int -> UI IO Sequence Console

render state = \send ->

Console

(show state) -- display the current counter value

(\input -> send (Next (End ()))) -- move to next state when of user input

And in order to run this component in an application, we must define an explore

function following Definition 4.1.2. This function must initialize the component’s internal
state and provide an infinite loop of printing the interface’s text to the user and prompting
for input. By making use of the IORef type (as in Example 4.1.1), one is able to define
such a function by simply extracting the current interface from the comonadic space,
printing its contents to the console, prompting the user for input and handling user
actions (given as a value in the pairing monad) by moving around in the comonadic
space (through the use of pairings, as defined in Section 3.2):

explore :: (Comonad w, Pairing m w) => Component IO w m Console -> IO ()

explore component = do

ref <- newIORef component -- initialize the reference with the initial space

forever $ do

space <- readIORef ref

-- send receives an action dispatched by the UI

-- and updates the state by moving around in the space

let send action = writeIORef ref (move space action)

let Console text action = extract space send -- extract the current interface

putStrLn text

input <- getLine

action input

The final application may, therefore, be written simply as:

main :: IO ()

main = explore counterComponent

Example 4.1.3. A more complex example of a component of console user interfaces
can be defined by using a different comonad. In general, user interfaces can be defined
in terms of a state type s and a function which obtains an interface of type a based on
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the current state. This description yields the Store comonad, which describes one of the
most (if not the most) general space for user interfaces, indexed by the type s, where
every position (or point) of this space contains a value of type a:

data Store s a = Store (s -> a) s

instance Comonad (Store s) where

extract (Store f s) = f s

duplicate (Store f s) = Store (Store f) s

In order to move around in the space described by this comonad, we can use the State
monad:

data State s a = State (s -> (a, s))

instance Monad (State s) where

return a = State (\s -> (a, s))

bind f (State g) = State $ \s ->

let (a, s’) = g s

State h = f a

in h s’

This monad can be understood as a computation that, given an initial state of type
s, produces a value of type a out of it and a new state. In this way, we may write two
simple computations in the State monad for modifying a state. The first one applies a
function to the current state, and the second one simply replaces the current state with
a new one:

modify :: (s -> s) -> State s ()

modify transform = State (\state -> ((), transform state))

put :: s -> State s ()

put newState = State (\_ -> ((), newState))

With this small framework, we can use the notion of a comonad as a space of user
interfaces to build a simple UI where we may have total control over the state of the
interface. But, in order to move around in the space described by the Store comonad by
using the State comonad, we are left to define, as of Section 3.2.1, a pairing between
both:

instance Pairing (State s) (Store s) where

pair f (State g) (Store get s) = f a (get s’)

where

(a, s’) = g s
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Considering the Console data type from Example 4.1.2, and using the Store comonad
and the State monad, we may finally define a simple component whose state, a list of
strings, gets printed to the console in every cycle. When the user types a message in the
console, it gets added to the list, but when the line typed by the user is empty, the state
is reset to an empty list:

listComponent :: Component IO (Store [String]) (State [String]) Console

listComponent = Store render []

where

render :: [String] -> UI IO (State [String]) Console

render list = \send ->

Console

("I’ve received: " ++ show list)

(\input -> send (if input == "" then put [] else modify (++[input])))

By using the explore function defined in Example 4.1.2, we may, then, run an
application with this component as:

main :: IO ()

main = explore listComponent

4.2 General model with side effects

Useful applications need side effects. These are impure computations that interact with
the real world, be it by printing a message to the screen, by reading a file from the
disk, accessing a database, making an external HTTP request, etc. Pure functional
programming, however, teaches that side effects in a program must be contained or
minimized.
It is desirable, then, that in this abstraction for user interface components given by

comonads, the component be able to produce side effects in response to user interaction.
For example, we would like to be able to read the first line of a file from the disk when
the user gives its name to the interface.

Recalling the definition of the Component type (from Definition 4.1.1), one may notice
the use of the base monad for maintaining the internal state of the UI component:

type Component base w m a = w (UI base m a) -- w ((m () -> base ()) -> a)

This base monad is used for side-effecting purposes: the maintenance of an internal
state throughout the execution of an application. In this way, we may be able to make
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use of this monad in order to produce arbitrary side effects alongside user actions (given
by the m monad).

Definition 4.2.1. A user interface component that may produce side effects is defined
similarly to a normal user interface component (from Definition 4.1.1). The main
difference is in the fact that, in the case of the former, user actions may carry side effects.
This can be done by redefining the UI type:

type UI base m a = (base (m ()) -> base ()) -> a

That is, producing user actions in response to user interaction may be understood
as calling an event handler function with a (possibly) side-effecting monadic action in
the base monad encapsulating a user action (or movement in the space of states of the
component) given by the m monad.
In this sense, a side-effecting user interface component may be defined as:

type ComponentT base w m a = w (UI base m a)

which is equivalent to:

type ComponentT base w m a = w ((base (m ()) -> base ()) -> a)

With this change, the explore function must also be changed to:

explore :: (Comonad w, Pairing m w) => ComponentT IO w m a -> IO ()

From now on, the types defined above will be used instead of those from Definition 4.1.1.

Example 4.2.1. An example of a simple side-effecting component is a component for a
console interface in which, when the user responds to the input prompt with a string p,
a file of name p will be searched for in the current directory; if it exists, then its first line
is read and printed to the screen. Furthermore, the component keeps track of whichever
files have been already found and read and erases this record if an invalid file name is
supplied. The user may refer to Example 4.1.3 for a similar component.

That being, a definition of this component may be given as:

import System.Directory

filesComponent :: ComponentT IO (Store [String]) (State [String]) Console

filesComponent = Store render []

where
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render :: [String] -> UI IO (State [String]) Console

render list send =

Console

("Files read: " ++ show list)

(send . tryReadFile)

tryReadFile :: String -> IO (State [String] ())

tryReadFile input = do

fileExists <- doesFileExist input

if fileExists

then do

contents <- readFile input

putStrLn (takeWhile (/= ’\n’) contents)

return (modify (++[input]))

else do

putStrLn "File not found"

return (put [])

In addition to that, as the type for the specification of components has been changed,
it is also needed to change the explore function used to run the component inside an
application. The only difference from the one defined in Example 4.1.2 is that the
function that handles user actions (the send function) must be defined in such a way that
it extracts the user action (of type m) encapsulated in the base monad, thus executing
the side effects in the base monad:

exploreT :: (Comonad w, Pairing m w) => ComponentT IO w m Console -> IO ()

exploreT component = do

ref <- newIORef component -- initialize the reference with the initial space

forever $ do

space <- readIORef ref

-- send receives an action dispatched by the UI encapsulated in the base monad

-- and updates the state by moving around in the space

let send baseAction = do

action <- baseAction

writeIORef ref (move space action)

let Console text action = extract space send -- extract the current interface

putStrLn text

input <- getLine

action input
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With this, user interface components may now, besides changing its state by moving
around in its space of states, produce side effects in response to user interaction. This
modification to the original model of Freeman [2016b] is a step forward in the direction
for using this technique for building real-world applications.

This modification does, however, present a limitation in the relationship between the
side effects that may be produced and the user actions, which change the state of a
component. This is limitation is in the fact that user actions cannot be interleaved with
side effects. As side effects in response to user interaction are described by a side-effecting
computation in a base monad, which, in turn, produces a user action when finished, the
state of a component can only be changed when of the end of a side-effecting reaction.

4.3 Composing user interface components

Another desirable trait of user interfaces in real applications is the possibility of composing
interfaces, that is, of having a parent component contain a child one inside itself and
having access to the state of its child. This allows for great modularity and separation of
concerns.
Freeman [2016b] has proposed the use of structures called comonad transformers in

order to compose comonadic spaces (of user interfaces) and monad transformers to
compose monadic actions (or movements inside the comonadic space).

Monad transformers

Monads have been an indispensable tool in pure functional programming since their
introduction by Moggi [1991] and Wadler [1995]. They are mainly used to model
computational effects and are commonly associated with a set of operations, for example,
a state monad provides operations for retrieving, replacing and updating (with a function)
the current state, whereas the IO monad may provide operations for accessing files or
printing messages to the console. In this way, when structuring complex programs it
is usual to want to combine multiple computational effects, and this must be done by
combining monads as building blocks of computations.
The most used way of combining monads is through the use of monad transformers.

Introduced by Liang et al. [1995], these structures are used to combine monads in a
hierarchical fashion, building new complex monads by adding computational features of
another monad to a pre-existing one, forming what is called a monad transformer stack.
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This incremental approach is popular in functional programming, because monad
transformers are easy to implement. Take for example the case where an application must
be designed where it has some form of state and must account for failures. As we have
seen in Section 2.4, specifically in Example 2.4.2 and Example 2.4.3, the Maybe monad
can be used for expressing computations which may fail. Also, from Example 4.1.3 we
know that the State monad can be used for expressing computations with internal state.

In order to build, then, an application that must account for failures while having an
internal state, we would like to make use of some form of combination of both monads.
That’s where monad transformers come in:

Definition 4.3.1. As of Liang et al. [1995], a monad transformer is any type con-
structor t such that, if m is a monad, then t m also is. This can be expressed through
the following type class:

class (Monad m, Monad (t m)) => MonadTrans t m where

lift :: m a -> t (m a)

That is, a monad transformer is a type constructor t such that, if t m for any monad m is
itself a monad, it is capable of embedding computations given in m into t m. Furthermore,
in order to guarantee that this monad transformer effectively combines features of monads
without changing the nature of an existing computation, the following laws must be
followed for whatever instance of the MonadTrans type class (we have used subscripts to
indicate to which monad the functions refer):

i. lift . returnm = returntm

ii. lift (bindm f m) = bindtm (lift . f) (lift m)

That is, the first law ensures that, if an empty (or pure) computation is lifted to
operate in the monad t, then it should yield an empty computation in t. The second
law guarantees that embedding a sequence of computations into t is the same as first
lifting them individually, and then sequencing them in the lifted t monad.

Example 4.3.1. As an example of the previous definition, recall the example of an
application that must account for failures while having an internal state. If this application
fails, its internal state must be rendered inaccessible, that is, the whole application enters
in a failure state. In this way, we may want that the Maybe monad used to express
potentially failing computations be, in some way, the most basic monad in this application.
Thus, we can define a monad transformer based on it:
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newtype MaybeT m a = { runMaybeT :: m (Maybe a) }

instance Monad m => Monad (MaybeT m) where

return a = MaybeT (return (Just a))

bind f (MaybeT m) = MaybeT $ do

maybeA <- m

case maybeA of

Nothing -> return Nothing

Just a -> runMaybeT (f a)

The MaybeT type constructor is defined in such a way that it simply encapsulates a
Maybe value inside another monad m. Monad transformers are usually defined in a way
that the monad m it embeds into itself encapsulate, in some way, its own computations.

The Monad instance for MaybeT m guarantees that a pure computation from a value of
type a can be constructed by simply encapsulating a pure computation of type Maybe

inside the monad m. Furthermore it ensures that sequencing (through the use of bind)
computations given in the MaybeT m monad is done by sequencing the encapsulated
computations given in the m monad while retaining the potentially failing behaviour of
the original Maybe monad.
We are, then, only left to define a way of embedding (through the use of lift)

computations in the m monad into the MaybeT m monad:

instance MonadTrans MaybeT where

lift ma = MaybeT (fmap Just ma)

That is, lifting a computation from the m monad into MaybeT m means simply transform-
ing the original computation in m into a computation that yields a successful computation
of type Maybe.

Thus, by embedding computations in a State s monad into the MaybeT monad trans-
former, we can obtain the desired behaviour. Suppose, then, an application which has
as its internal state the representation of second degree polynomial (its a, b, and c

coefficients, such that the polynomial is given by ax2 + bx + c). We want a simple
computation in this application that is able to calculate real roots from the state of the
program. That is, if the polynomial described in the current state of the program has
real roots, the computation succeeds, the state is cleared and the calculated roots are
returned. But in the case it does not have real roots, the whole computation fails.

In this way, we are left to define functions which may, then, retrieve the internal state
of a computation in the State monad, and turn a MaybeT m computation into a failing
one:
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get :: State s s

get = State (\s -> (s, s))

fail :: MaybeT m a

fail = MaybeT (return Nothing)

Hence, the computation described above can be written as:

data Equation = Equation { _a :: Float, _b :: Float, _c :: Float, }

calculateRealRoots :: MaybeT (State Equation) (Float, Float)

calculateRealRoots = do

Equation a b c <- lift get

let delta = b*b - 4*a*c

if delta < 0 || a == 0

then fail

else do

put (Equation 0 0 0)

return (((-b) + sqrt delta) / (2 * a), ((-b) - sqrt delta) / (2 * a))

Comonad transformers

If monad transformers are used to combine monadic values (or computations) given by
different monads while preserving the structure of the computations in both monads,
comonad transformers may be used to combine comonadic values (or spaces, the way
they are used in this thesis) in such a way that the structure of the spaces described by
both monads is preserved.
Comonad transformers are not found in the literature, as their use is much more

restricted, perhaps a consequence of the restricted use of comonads as well. Nevertheless,
Kmett & Menendez [2008] defines in a package for the Haskell language a definition of a
type class for comonad transformers.

Definition 4.3.2. As of Kmett & Menendez [2008], a comonad transformer is any
type constructor d such that, if w is a comonad, then d w also is. This can be expressed
through the following type class:

class (Comonad w, Comonad (d w)) => ComonadTrans d w where

lower :: d (w a) -> w a

By using the notion of comonads as spaces, it is possible to think of a comonad
transformer as a type constructor d such that, if d w for any comonad w is itself a
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comonad, it is capable of extracting values out of subspaces given by w contained in the
space defined by d w.
Moreover, in order to guarantee that this comonad transformer effectively combines

the spaces defined by both monads without changing their nature and properties, the
following laws must be followed for whatever instance of the ComonadTrans type class
(we have used subscripts to indicate to which monad the functions refer):

i. extractm . lower = extracttm

ii. duplicatem . lower = lower . extendtmlower

Accessing child components from parents

By using comonad transformers for combining comonads, we may compose spaces of user
interfaces, that is, components. It is possible, for instance, to define a parent component
which, given any child component of arbitrary comonad w and monad m, encapsulates this
child in its own space as a subcomponent. In order to do this, a comonad transformer
must be used for representing the parent component’s space.

A simple example of a comonad transformer is the StoreT comonad below, the comonad
transformer version of the Store comonad:

data StoreT s w a = StoreT (w (s -> a)) s

instance Comonad w => Comonad (StoreT s w) where

extract (StoreT wf s) = extract wf s

duplicate (StoreT wf s) = StoreT (extend StoreT wf) s

Listing 4.3.1: The StoreT comonad transformer.

This data type allows for us to combine the space described by the Store comonad
with that of any other comonad w. Also, its instance for the ComonadTrans type class
lets us have access to the subspace in the current position:

instance ComonadTrans StoreT where

lower (StoreT wf s) = fmap (\f -> f s) wf

From what has been said so far, it is known that, in order to use this comonad as a
space of user interfaces, we need a pairing monad to describe user actions in this space.
Hence, if the State monad pairs with the Store comonad, we may define a StateT monad
transformer that pairs with the StoreT comonad transformer (its instance for the Monad

type class has been omitted):
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data StateT s m a = StateT (s -> m (a, s))

instance Pairing m w => Pairing (StateT m) (StoreT w) where

pair f (StateT get) (StoreT wg state) =

pair (\(a, state’) g -> f a (g state’)) (get state) wg

Listing 4.3.2: The StateT monad transformer and its Pairing
instance with the StoreT comonad transformer.

Example 4.3.2. Suppose we want to use the listComponent component given in Exam-
ple 4.1.3 as the parent of another component given by a comonad w. In this way, we need
to redefine listComponent in order to have it make use of the StoreT comonad defined
above and to accept its child component as an argument:

listComponent

:: Component IO w m Console

-> Component IO (StoreT [String] w) (StateT [String] m) Console

listComponent childComponent = Store renderComposed []

The main problem now is: how do we define renderComposed? From the definition
of the StoreT data type in Listing 4.3.1, we know that it must have type w (s -> UI

IO (StateT [String] m)), that is, it must be the render function from the original
implementation of listComponent (in Example 4.1.3) encapsulated into the w comonad.
As we have access to the child component, which is a value of the w comonad, we

may use it in order to have our desired renderComposed function. This could be done by
applying the extend function from the Comonad type class to the child value.
Recall from Section 2.5 that the extend function takes as parameters a value w a,

where w is a comonad, and a function of type w a -> b. This function represents a
comonadic computation, that is, a computation that, given a comonadic context, is able
to produce a value. And that’s exactly what we need in order to have access to the child
component while rendering the parent component:

listComponent

:: Component IO w m Console

-> Component IO (StoreT [String] w) (StateT [String] m) Console

listComponent childComponent = Store renderComposed []

where

renderComposed = extend render child

render child list = \send -> ...
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If a comonad represents the space of all possible states of a UI component, extending
a comonadic computation over this space makes it possible to capture the whole space
withing this computation, that is, the computation may have access to all future states
of this component. This can be seen also in the fact that the render function has access
to the child component.

Besides simply using having access to the current interface of a child component, it is
often desirable to be able to retrieve or modify the current state of a child component.
By making use of pairings (as of Section 3.1) one is able to perform monadic actions in
the context defined by a comonad, that is, we can apply user actions to components and
retrieve their result. What leads us to the following definition:

Definition 4.3.3. To select a monadic action over a comonadic context means pairing
both values (the monadic action and the comonadic context) and retrieving the value
produced by the execution of the monadic action.

Thus, selecting a part of a comonadic space means retrieving the result of the application
of a monadic action to a comonadic context by using the following function:

select :: Pairing m w => w a -> m b -> b

select space action = pair (\result _ -> result) action space

Example 4.3.3. With the select function we are able now to select specific parts of
the space of states of a component by applying monadic actions to it. As an example,
consider the listComponent from Example 4.1.3, whose type is:

listComponent :: Component IO (Store [String]) (State [String]) Console

If at some point of the code we may have access to this component, we are able to
retrieve its current state (of type [String]) by applying the following get action:

get :: State s s

get = State (\s -> (s, s))

...

select listComponent get :: [String]
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4.4 User interface architectures

The main contributions of the work of Freeman [2016b] is the proposition of the corre-
spondence between comonads and user interfaces. The correspondence, however, goes
even further: Freeman proposes that specific comonads may correspond to specific
architectures (or paradigms) of user interfaces.
Some libraries or models for user interfaces define distinct architectures for handling

and organizing user interfaces. These architectures define not only the way UI components
may be organized or may communicate, but also define how their own internal state
may be managed, accessed or modified (by the components themselves or by external
components).
Handling these UI architectures with comonads allows us to abstract specific details

of the implementation of user interfaces and talk about them in a higher level, only in
terms of their architecture and, in turn, of the comonads that define them.
In this section we explain some of these correspondences between specific comonads

and well-defined architectures for user interfaces.

4.4.1 A general model with the Store comonad

The Store comonad seen throughout this chapter (defined in Example 4.1.3) has been
said to describe a very general model for user interfaces. Recall from its definition that it
may be defined as a data type having a current state dictated by a type s and a way to
obtain a user interface of type a based on the current state:

data Store s a = Store (s -> a) s

instance Comonad (Store s) where

extract (Store f s) = f s

duplicate (Store f s) = Store (Store f) s

In addition to that, its instance of the Comonad type class may be interpreted as making
possible for extracting the current user interface (based on the current state) as well as
for duplicating the space and, thus, obtaining in each point of the original space (the
possible future user interfaces) a new space with the original point as its current interface
and its own possible future interfaces.
A visualization of this comonad as a space where, from every point a user interface

can be extracted is given in the figure below:
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Figure 4.1: The Store comonad represents a pointed space indexed
by a state type – in this case, the Int type. Movement in this space is

free, restricted only by the state type.

In Figure 4.1, every point of the space (indicated by a circle with its corresponding
state inside) contains a possible user interface, and can be accessed from any other point
(represented by the pointed arrows). This is so because movements in this space can
be expressed in terms of the State monad, which provides operations for replacing the
current state for whichever value of the state type one wants, as well as for retrieving the
current state:

data State s a = State (s -> (a, s))

put :: s -> State s ()

put newState = State (\_ -> ((), newState))

get :: State s s

get = State (\s -> (s, s))

In this sense, as seen in Section 4.3, specifically in Definition 4.3.3 and Example 4.3.3,
if a component given by a Store comonad is a child component – that is, if another
component has access to this component –, it is possible then, to retrieve the current
state of this component (by selecting the get monadic action over its space) as well as
to modify its current state (by selecting the put monadic action over its space).

Moreover, a parent component in this general architecture can be defined by using the
StoreT comonad from Listing 4.3.1.
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4.4.2 The Elm architecture with Moore machines

The Elm language [Czaplicki, 2012b] is a pure functional domain-specific language for
building interactive applications for the Web. It defines its own architecture where the
whole application, that is, the whole user interface is defined in terms of a state type,
a type of user actions and two functions: one for rendering the current interface given
the current state of the program, and one for updating the current state when of a user
action in response to user interaction.

As proposed by Freeman [2016b], this architecture may be defined in terms of a Moore
machine [Moore, 1956]. Disregarding the output of a Moore machine, that is, taking it
as classic deterministic finite automata with no output alphabet, a Moore machine is a
finite-state machine that can be defined by a set of states S, an initial state S0 ∈ S, a
finite set of inputs Σ called the input alphabet and a transition function T : S × Σ→ S,
mapping a state and an input value to the next state.

This can be modelled as the following recursive data type:

data Moore i a = Moore a (i -> Moore i a)

Listing 4.4.1: The Moore type of Moore machines.

Where i is the type of inputs corresponding to the finite set of inputs Σ and a is the
type of states corresponding to the set of states S. The Moore constructor builds a Moore
machine from an initial state of type a and a transition function, which, given an input
value of type i, returns a new machine with the next state.

However, what most matters in this section is the fact that the Moore type admits a
comonad:

instance Comonad (Moore i) where

extract (Moore a _) = a

duplicate w@(Moore a t) = Moore w (duplicate . t)

When this comonad is interpreted as a space of user interfaces, we can visualize this
space as an infinite tree of interfaces, where every node of the tree contains an interface.
Branching in this tree is given by the i type of inputs, as in the following figure:
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Figure 4.2: The Moore comonad represents a space such as an infinite
tree. There is a root point and one can navigate to the child nodes

with branching given by a type of inputs.

Movements in this space, then, can be thought of as sequences of values of the input
type i. This analogy yields the following data type which is a monad and pairs with the
Moore comonad (its monad instance is ommited):

data Actions i a = NoAction a | Action (i, Actions i a)

instance Pairing (Actions i) (Moore i) where

pair f (NoAction a) (Moore b _) = f a b

pair f (Action (i, r)) (Moore _ t) = pair f r (t i)

Listing 4.4.2: The Actions monad and its pairing with the Moore

comonad.

Producing a single action given a value of the input type i may be done through the
use of the following function:

action :: (i, a) -> Actions i a

action (input, a) = Action (input, NoAction a)

Listing 4.4.3: The action function embeds a single action of the
input type i into the Actions monad

Example 4.4.1. In order to define a user interface component using the Moore comonad,
we must, first, define a set of user actions by defining an input type. Suppose we want
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to create the counter component illustrated in Figure ??. It can be seen that it defines
three user actions, namely: incrementing, decrementing or resetting the counter. Thus,
our input data type can be defined as:

data Input = Increment | Decrement | Reset

Now, the only task left is to define an infinite tree of user interfaces, given by a value
of the Moore Input type. For that we shall use a helper function that, given an initial
state of type s, and a function that, given a state of type s, produces a value of type a

and transition function, which, given an input of type i, produces the next state:

unfoldMoore :: s -> (s -> (a, (i -> s))) -> Moore i a

unfoldMoore state next = Moore a (\input -> unfoldMoore (transition input) next)

where

(a, transition) = next state

With this function, we are now able to define our counter component using the Moore

comonad:

mooreComponent :: Component base (Moore Input) (Actions Input) a

mooreComponent = unfoldMoore 0 (\model -> (render model, update model))

where

update :: Int -> Input -> Int

update counter Increment = counter + 1

update counter Decrement = counter - 1

update _ Reset = 0

render :: Int -> UI base (Actions Input) a

render counter = \send -> ... -- declarative specification of the interface

From the definition of the user interface of the previous example, it can be noticed
that the internal state of that component (of type Int) is private. That is, no external
component can have access to it. In this sense, components defined in terms of the Moore
comonad cannot be composed.

So, in order to build complex applications, one must write a single large state machine,
just as in the Elm architecture. The similarities with that architecture go further: there
is a type of user actions and an update and render functions. In this sense, it can be
said that the Moore comonad simulates the Elm architecture.
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The improvements made in this thesis to the original model of Freeman [2016b] have been
implemented in order to allow for the verification of the suitability of the formal model
to the building of real-world applications. Thus, we have extended the original model to
support user interfaces which produce side effects as well as a hierarchical organization of
UI components through the use of monad transformers (as proposed in Freeman [2016b]).

Therefore, in order to validate the developed improvements, a Web application for task
management has been developed Xavier [2017]. This application produces side effects in
order to save the tasks created by the user in the Web browser’s local storage and has
been developed with two hierarchically organized components.

5.1 The application

A real-world application with user interfaces is typically comprised of multiple UI
components (or modules). These components abstract specific self-contained parts of the
interface and may be hierarchically organized. This organization of components allow
for great flexibility and growth of complexity with ease. Furthermore, for real utility,
complex applications must interact with the real world through side effects, be them a
connection with a database, a remote HTTP call or a simple local logging of actions.

We propose and implement in this chapter a contrived but complete example of what
a real-world application might be. Moreover, we implement two versions of the same
application – that is, with exactly the same outcome for the end user both in terms of
interaction and experience – in order to verify the correspondences between comonads
and user interface paradigms detailed in Section 4.4.

A task management application. The application here detailed is a fabricated
version of a simple task management application. As such, it must allow for the end user
to view, insert, remove or mark tasks as completed. In addition to that it must display a
counter for how many tasks have already been marked as completed.
We have chosen to separate the application in two distinct components, namely the

App and the Tasks component. As we have not yet been able to devise a comonad
representing a list of other comonads, we are not able to construct a list of tasks by
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combining multiple small hypothetical Task components. Thus, the Tasks component
must be the smallest fragment in our application.
In this sense, the App component shall contain an input field where the user may

type text for the insertion of a new note. By hitting a confirmation key (the return
key in physical keyboards), the text inserted must be used to create a new task (placed
as the first one in the list), and the input field must be cleared. The App component
must also display a counter with the number of completed tasks. In this way, the App

component must, somehow, have access to this data, which shall be contained in the
Tasks component, which shall be, itself, a child of the App component.

In its turn, the Tasks component must simply contain a list of tasks in its internal
state. It must display each task separately, as well as a button next to them that, when
clicked, removes its accompanying task. In addition to that, when the user clicks on a
task, its status of completion must be toggled: if the task is marked as done, it is, then,
unmarked, or else, it is, then, marked as done. This component must, in this sense, have
parts of its state exposed or encapsulated, such as the number of tasks marked as done,
which may be accessible from external components. Moreover, it must provide ways for
an external component to modify its state, so that new tasks can be added.

Figure 5.1: Components of the application: the App component
framed in blue and the Tasks component in red.

.
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5.2 The PureScript language

The language chosen for the implementation of this application is the PureScript language
[PureScript, 2013]. PureScript is a pure functional language that is deeply inspired and
similar to Haskell. It generates JavaScript code and can, then, be executed in a Web
browser and, consequently, be used for the development of applications with user interfaces
for the web.
The ecosystem of the PureScript language contains several useful libraries for the

development of UI-based applications, as well as bindings for well-known JavaScript
libraries. In order to be able to render our user interface in a Web browser, we have used
the purescript-react library which exposes bindings for the React library [Facebook,
2013], a library for declarative rendering of user interfaces. This library is used solely for
this purpose of having a way to declaratively render our user interface.

In this chapter, however, we shall display source code in the Haskell language. The API
for the purescript-react library will be shortly explained in Section 5.4 with Haskell
code.

5.3 The React library

React [Facebook, 2013] is described as a “declarative, efficient, and flexible JavaScript
library for building user interfaces”. In this thesis, we make use of this library in order
to be able to declaratively render HTML elements to the Web browser, and to be able
declaratively specify responses to user actions.
Being a component-based library, our application will be created as a single React

component (one component for each one of the two versions of the application). A
component in the React library is simply a self-contained piece of interface that has an
internal state, which is maintained by the library’s runtime. When this internal state
is modified, a user-defined render function is called. This render function takes the
new internal state of the component and produces a declarative specification of what to
render to the interface – in this case, HTML elements given by a ReactElement type.

The important details of this library – which are common to most libraries for declara-
tive rendering – are that each component is defined in terms of an internal state and a
rendering function. However, in the declarative specification of what to render to the
user (produced by the rendering function), there may be properties of elements which
provide ways to modify the component’s state in reaction to user inputs. We call these
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properties event handlers.
In the purescript-react library, values of the ReactElement type are constructed

through the use of functions from the React.DOM module. These functions take a list of
properties for the element as their first argument and a list of child ReactElements as
second argument. It may be noticeable, from the example below, that these functions
are named after the HTML tags to which they correspond, e.g. button for the <button>

tag, etc.

Example 5.3.1. An example of a simple component defined using the purescript-react
library is that of a counter component. It contains a single button, which, when clicked by
the user, increments the number that is displayed as its label. The code below is written
in pseudo-Haskell and mimics the API of the purescript-react library (unimportant
details were left omitted):

import qualified React as R

import qualified React.DOM as D

import qualified React.DOM.Props as P

counterComponent :: R.ReactClass

counterComponent = R.createClass (R.spec initialState render)

where

initialState = 0

render :: Int -> R.ReactElement

render state =

D.button

[ P.onClick (R.writeState (state + 1)) ]

[ D.text (show state) ]

One can observe that the rendering function (render) takes a value of the type of the
state of the component and returns a value of the ReactElement type. Also noticeable
is the fact that event handlers (such as the onClick function) take IO () actions as
arguments, which are executed when the corresponding event is received. In this example,
then, when the user clicks the button, the state of the component is updated.
In this sense, React components may be interpreted as a Store comonad, as seen in

Section 4.4.1.
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Exploring comonadic user interfaces with React

Given this way of creating React components from a specification (an initial state and a
rendering function), we may use this library to explore comonadic user interfaces, that is,
user interfaces defined as a comonad representing a space.
As seen in Section 4.4, a general model for a function that allows for the exploration

of a space of user interfaces (defined by a comonad) is given by:

explore :: (Comonad w, Pairing m w) => Component IO w m a -> IO ()

The return type IO () is used as an abstraction for the act of presenting the generated
interface to the user. In the case of the React library, we can use the very definition of a
React component (through the ReactClass type) in order to perform this presentation.

Hence, a function for exploring a comonadic space of user interfaces by rendering the
generated interfaces through the React library may be given by a simple adaptation of
the function used to create a React component (in Example 5.3.1) and of the function
used to explore a comonadic space of console-based interfaces (in Example 4.2.1):

import qualified React as R

type ReactComponent w m = ComponentT IO w m R.ReactElement

type ReactUI m = UI IO m R.ReactElement

exploreReact :: (Comonad w, Pairing m w) => ReactComponent w m -> R.ReactClass

exploreReact space = R.createClass (R.spec space render)

where

render state = extract state (send state)

send state baseAction = do

action <- baseAction

R.writeState (move state action)

5.4 Implementation on two different architectures

As seen in Section 4.4, using different comonads in the definition of user interface
components may yield different architectures. For example, by using the Store comonad
one may obtain a general architecture for user interfaces, similar to that of the React
library. Or by using the Moore comonad (as of Section 4.4.2), an simple architecture
similar to the Elm architecture [Czaplicki, 2012a] may be obtained.
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A common point of the comonads mentioned in Section 4.4, though, is that they all
provide means for structuring user interfaces with the help of a function which, given
the current internal state of the component, produces an interface. By using the React
library for rendering the interfaces as of Section 5.3, this function is equivalent to the
following render function:

render :: state -> ReactUI m

Where state is the type of the component’s internal state and m is the monad of user
actions produced by the component – or movements inside its space of states. In this
way, defining a component can be thought of as implementing values equivalent to the
component value below:

component :: forall w m. ReactComponent w m

component = ...

where

render :: state -> ReactUI m

Listing 5.4.1: The general form of a component given in any of the
architectures here presented.

Where the definition of the component itself is a value of the comonadic type w

representing the space of user interfaces which has access to the local render function.
In this sense, every user interface component defined in this thesis will be of the

form of the component function above, including the two versions of the App and Tasks

components, which shall be presented in the following sections.
The App component, however, does present a peculiarity in the sense that it is a parent

component; that is, its space of interfaces is a combination of its own space of user
interfaces and that of its child component, namely the Tasks component.

For the case of a parent component, its child component (in its own current state) must
be available to the parent’s render function, just as its state is. This can be done by
applying the extend function (from the Comonad type class) to the child component, which
allows for performing, over all possible UIs this component may produce, a comonadic
computation, that is, a computation which produces a value out of some context; in this
case, a user interface out of a space of states:
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parentComponent :: ReactComponent childW childM -> ReactComponent w m

parentComponent childComponent = ...

where

renderComposed :: state -> ReactUI m

renderComposed = extend render childComponent

render :: ReactComponent childW childM -> state -> ReactUI m

Listing 5.4.2: The general form of a parent component given in any
of the architectures here presented.

The intuition behind extending the render function (with the extend function) over
the child component’s space, is that it makes it possible to capture all future states of
the child component, that is, extending a function over a component yields access to its
whole possible future. This can be seen also in the fact that the render function has
access to the child component.

The domain. The application was created as a Web page containing two React
components, namely the two versions of the application, each one having a distinct
comonad and, therefore, architecture. These two versions do share, however, the same
domain, and, in spite of this, we have defined a few data types to contain the definitions
for the domain of the applications: a data type for a list of tasks and a data type for the
rest of the state of the application (namely the state of the input field for new tasks and
the id of the last task inserted).

data Task = Task { _taskId :: Int, _taskDescription :: String, _taskDone :: Bool }

type TasksModel = [Task]

data AppModel = AppModel { _appField :: String, _appLastId :: Int }

We have also defined the initial value for the state of the App component to be the
same throughout the three versions. The initial value for this component depends on an
initial list of asks and has its input field cleared:

appInit :: TasksModel -> AppModel

appInit tasks = AppModel "" (length tasks)

We shall not detail in this section the machinery for saving and retrieving tasks from
the browser’s local storage, as these implementation details are somewhat unrelated to
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the main subject of this work. It is already known from Section 4.2 how side effects may
be produced in response to user interaction.
The reader can refer to the source code for the application in the reference to Xavier

[2017] in the Bibliography section.

Figure 5.2: Screen capture of the developed applications where every
card represents an architecture associated with a specific comonad.

5.4.1 React architecture

As stated in Section 4.4.1, the architecture of the React library – that is, an architecture
where every possible state is accessible from any other state and where every component
may freely access or modify the state of any other – is described with the Store comonad
and the State monad, both defined in Section 4.4.1.

The Tasks component. In this architecture, the space of states for the Tasks compo-
nent is, then, a Store comonad, and movements (or actions) in this space are given by
the State monad:

type TasksSpace = Store TasksModel

type TasksAction = State TasksModel
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As the space of user interfaces for the Tasks component is given by the Store comonad,
it may be defined as just a Store comonad with an initial state and a rendering function,
which takes the current state and produces a declarative description of the interface.
That is, the proper Tasks component, may, then, be defined following the general form
for a component defined in Listing 5.4.1:

type TasksComponent = ReactComponent TasksSpace TasksAction

tasksComponent :: TasksModel -> TasksComponent

tasksComponent initialState = store render initialState

where

render :: TasksModel -> ReactUI TasksAction

render model = \send -> ... -- declarative description of the interface

The user actions (or movements inside TasksSpace) in this component are values of
the TasksAction type, which is, in fact, the State monad. These actions are dispatched
through the use of the send function (as seen in Section 4.1) inside event handlers of
React elements (as in the use of the onClick function in Example 5.3.1). When an action
is dispatched and handled, the state of the application is, then, updated, by pairing the
monadic action with the comonadic space (as shown in Section 5.3).

As an example of actions in the Tasks component, we have below the definition of the
action for for removing a task:

removeTask :: Int -> TasksAction ()

removeTask id = modify (filter ((/= id) . _taskId))

The App component. The outermost component of the application, the App component
is the parent of the Tasks component, that is, its space may be defined as a composition
of both spaces and its actions may be defined as a composition of the action types of
both components. For that we may use the StoreT and StateT monad transformers
defined in Section 4.4.1. Thus, the type for the space and the type for user actions in the
App component can be defined as:

type AppSpace = StoreT AppModel TasksSpace

type AppAction = StateT AppModel TasksAction

The App component itself, may, then, be defined as a value of the StoreT comonad
containing a state of type AppModel and a function for retrieving user interfaces (of type
ReactUI AppAction) out of the current state. By following the general model for a parent
component defined in Listing 5.4.2:
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appComponent :: TasksModel -> ReactComponent AppSpace AppAction

appComponent tasks = StoreT (extend render (tasksComponent tasks)) (appInit tasks)

where

render :: TasksComponent -> AppModel -> ReactUI AppAction

render child model = \send -> ... -- declarative description of the interface

The reader can observe that, by simply extending – with the extend function – the
render function over the Tasks component, it is possible to capture all its future internal
states, that is, extending a component yields access to its whole possible future. This
can be seen also in the fact that the render function has access to this component.
However, some internal machinery (abstracted through a very simple liftComponent

function) must be used in order to have the state of the child component updated
alongside the state of its parent. This function will be omitted in this report, but the
reader may have access to it through the source code of Xavier [2017].
An example of communication between both components can be given with the user

action for creating a new task:

createTask :: AppAction ()

createTask = do

model <- get

lift $ modify (++ [Task (_appLastId model) (_appField model) False])

put (AppModel "" (_appLastId model + 1))

By making use of the MonadTrans instance for the StoreT type, we can lift actions
from the parent component (App) to the child component (Tasks) with the lift function.

5.4.2 Elm architecture

As detailed in Section 4.4.2, the architecture of the Elm library is an architecture where
the whole application must be defined as a single user interface component. Furthermore,
the application is defined in terms of a type of user inputs, an update function (for
changing the application state given the current state and a user input), and a render
function, which produces the current interface given the current state.

It has been shown that the Moore comonad (defined in Listing 4.4.1) simulates the Elm
architecture by defining a tree-like space of user interfaces. Furethermore, the Actions

monad (defined in Listing 4.4.2) can be used to express movements (or user actions) in
the space of interfaces defined by the Moore comonad.
From the fact that, in the architecture described by the Moore comonad, there is no

way to use multiple components in an application, a type for the global state of the
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application, that is, a type which contains all the state information of the application,
has to be defined:

data GlobalModel = GlobalModel

{ _globalField :: String

, _globalLastId :: Int

, _globalTasks :: TasksModel

}

And, given an initial list of tasks, the initial state of the application is given by the
following function:

globalInit :: TasksModel -> GlobalModel

globalInit tasks = { field: "", uid: length tasks, tasks }

The Tasks component. In this architecture, the space of states for the Tasks compo-
nent is, then, a Moore comonad, and movements (or actions) in this space are given by
the Actions monad. As the whole application is given by a single component, we shall
not define a type for the space of this component.

data TasksInput = AddTask Task | RemoveTask Int | ToggleDone Int

type TasksAction = Actions TasksInput

In fact, the Tasks component will not be a component itself, but only provide abstrac-
tions for separation of concerns, thus, defining a way of rendering its own interface based
on a part of the global model, as well as a function for updating a part of the state of
the whole application:

tasksComponent :: TasksModel -> ReactUI Action

tasksComponent model = \send -> ... -- declarative specification of the interface

tasksUpdate :: TasksModel -> TasksInput -> TasksModel

The App component. The App component, in the architecture given by the Moore

comonad functions as the whole application itself, that is, its space define the space of
states of the whole application (including that of the abstracted components).

type AppInput = ChangeField String | IncrementLastId | TasksAction TasksInput

type AppAction = Actions AppInput

type AppSpace = Moore AppInput
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appComponent :: TasksModel -> ReactComponent AppSpace AppAction

appComponent tasks = unfoldMoore (globalInit tasks) step

where

step model = (render model, update model)

update :: GlobalModel -> AppInput -> GlobalModel

update model input = ...

render :: GlobalModel -> ReactUI AppAction

render model = \send -> ... -- declarative specification of the interface

In order to embed the tasksComponent interface inside the interfaces given by appComponent,
the user actions dispatched by it must be encapsulated in the TasksAction constructor
of the AppInput type by using a function of type:

mapAction :: (TasksInput -> AppInput) -> TasksAction a -> AppAction a

That is, given a way to convert values of type TasksInput to values of type AppInput,
we may transform movements in the subspace of the tasksComponent interface (given by
the TasksAction monad) into movements in the global space of appComponent.
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A task management application for the Web browser has been created using an extension
of model of Freeman [2016b] here devised (see Chapter 4). This extension provides
support for the production of side effects – saving the tasks a user has created in the
Web browser’s local storage – as well as for composition and communication between
components – the shell of the application has access to the data contained by the
component that manages the tasks and may display, for instance, how many tasks have
already been completed.
Furthermore, the application has been developed in three separate versions, whereby

each version is developed using a different user interface architecture (under the same gen-
eral model), thus demonstrating the some of the correspondences between UI paradigms
and comonads proposed in Freeman [2016b].

Moreover, apart from the high complexity of the concepts involved in understanding and
developing this model, given a set of helper functions and combinators, the development
process of this application has shown itself to be comfortable, practical and, above all,
pragmatic.

6.1 Results and discussion

As aforementioned, the main contribution of this work is an extension of the model of
Freeman [2016b] for representing user interface components as comonads to support
side-effecting user interfaces as well as composition (with communication) of components.
The original model uses the concept of comonads in order to represent user interface

components as a space of all possible user interfaces, where the shape of this space is
given by the component’s structure and internal state. Furthermore, user actions in
this UI component are represented as movements in this space of interfaces, where the
current position in the space defines the interface being presented to the user. These
movements are, in turn, defined by monads. Furthermore, the concept of a pairing of
functors has been explained in Section 3.1 as a means to properly navigate in this space
of user interfaces (Section 3.2) by combining specific comonads (defining spaces) with
specific monads whose structure can be used to define movements in these spaces.
The complexity of the concepts involved in this model, however, may impose a great

difficulty on its adoption for the development of real-world applications. One limitation
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of the technique, in the way it is presented in this thesis, is that it is considerably difficult
to generate or discover monads that may be used to describe movements in a space
defined a comonad; that is, it is difficult to find pairings between comonads and monads.

Side-effecting user interfaces. The addition to the original model of the possibility
for a component to produce side effects in response to user interaction has been made
through the encoding of user actions (or movements in the space of user interfaces) in a
base side-effecting monad. This concept is further detailed in Section 4.2.
A problem identified with this simplistic approach to side-effecting UIs is that user

actions (defining state changes in the component) cannot be interleaved with side-effecting
computations. That is, a user action is only produced at the very end of a side-effecting
computation. This disables the possibility, for instance, to have multiple (asynchronous)
state changes in a component in reaction to user interaction.

Composing user interfaces. Already proposed by Freeman [2016b], the use of
comonad transformers (allied to the used of monad transformers) was used in order
to hierarchically compose user interface components (in Section 4.3). Apart from that,
we have discovered ways in which a parent component may communicate with a child
component by accessing parts of its internal state or even modifying it or the user actions
dispatched by it.

Moreover, this communication between components is limited by the comonad used in
their definition. That is, the comonad must provide operations which allow for accessing
or modifying of its state. An example of this lies in the fact that the Moore comonad
(detailed in Section 4.4.2) can be used to define UI components with private, unaccessible
state. This comonad was, then, used as a representation of the Elm architecture [Czaplicki,
2012a], which exhibits the same kind of behaviour.

However, a consequence of the difficulty in finding monads or pairings for specific
comonads (such as one for a list of comonads) prevents the use and experimentation with
more complex forms of composition.

Comonadic interfaces for real-world applications. In addition to the previously
mentioned contributions, this work properly validates the suitability of this general
abstract model of user interfaces for the development of real-world complex applications.
By developing a small but sufficiently complex application that makes use of the extensions
to the original model here developed, we have been able to verify that the correspondences
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between distinct UI architectures (or paradigms) and specific comonads proposed by
Freeman [2016b] still hold when an application grows in complexity and size.

6.2 Future work

There is very much room for improvement and further research in this subject matter,
perhaps due to the inherent complexity of the theme. While the model here developed has
been proven useful and practical for the development of applications with user interfaces,
there are a number of possible improvements and further developments, ranging from
the most theoretical to the most practical ones.

Generate monads for any comonad. As a first and more immediate possibility for
future work, we plan on further improving the expressiveness and ergonomics of the
technique here presented. By using a technique proposed by Kmett [2011] (and used by
Freeman [2016b] in the original model), we shall be able to to eliminate the necessity
of finding or developing specific monads and pairings for given comonads, something
that has been shown an extremely laborious task. This change in the model would also
provide the means needed to correct two limitations of the current model, namely: the
inability to express non-hierarchical composition of components (through a comonad
that describes a list of comonads), and the inability of interleaving side effects with user
actions.

A library for building user interfaces. The model here developed has its practicality
and utility praised mainly due to the abstractions devised on top of it to the development
of the small application from Chapter 5. We believe that collecting abstractions, helper
functions and user interface combinators in the form of a software library could not only
be fairly straightforward but produce an artifact that could be of remarkable use to the
community and industry for the development of UI-based applications.

Implementation with other rendering libraries. Furthermore, another possibility
to further verify the potential ubiquity of this model is to implement other applications
that abstract their user interfaces with it. However, for better results we suggest the use
of different ways, libraries or techniques for presenting the interfaces to the user, as in
this thesis we have made use of standard IO actions (for writing to the console) and of
the React library (for rendering HTML based interfaces on a Web browser).
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Composition of components with Day convolution. Freeman [2016a] has made
use of the representation in the Haskell language of a category-theoretical structure
called the Day convolution in order to horizontally (that is, non-hierarchically) combine
user interface components. The use of this structure can lead to the development of a
comonad for describing lists of UI components, as of Freeman [2017].

Formalization of pairings from a proper theoretical viewpoint. The definition
of a pairing of functors given in Section 3.1 is somewhat informal. It is given in terms of
a Haskell type class and provides no laws or whatever non-contextualized interpretation.
In spite of this, a properly theoretical work should be done over this structure in order
to clarify its meaning and definition.
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